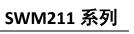


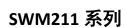
ARM®Cortex®-M0 32 位微处理器


SWM211 系列 MCU 数据手册

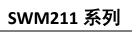
华芯微特集成电路有限公司
Synwit Integrated Circuit Co., Ltd.

目 录

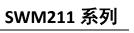
相关	文档		8
	缩写		8
	寄存器	描述列表缩写约定	8
	命名规	则说明	9
1	概述		10
2	特性		11
3	选型指	南	14
4	功能方	框图	15
5	管脚配	置	16
	5.1	SWM211C8T7	16
	5.2	SWM211G6S7	17
	5.3	SWM21DC8U7	18
	5.4	SWM21DD8U7	19
	5.5	SWM21DK6U7	20
	5.6	SWM21PE6S7	21
	5.7	SWM21PG6S7	22
	5.8	管脚定义	23
	5.9	管脚复用功能	31
6	功能描	述	33
	6.1	存储器映射	33
	6.2	中断控制器(NVIC)	35
	6.3	系统定时器(SYSTIC)	50
	6.4	系统控制器	57
	6.5	系统管理(SYSCON)	67
	6.6	端口控制模块(PORTCON)	114
	6.7	通用 I/O (GPIO)	153
	6.8	加强型定时器(TIMER)	175
	6.9	基础定时器(BTIMER)	202
	6.10	正交编码器(QEI)	217
	6.11	看门狗定时器(WDT)	232
	6.12	UART 接口控制器(UART)	244
	6.13	I2C 总线控制器(I2C)	265
	6.14	SPI 总线控制器(SPI)	291
	6.15	脉冲宽度调制(PWM)发生器	311
	6.16	3P3N 预驱(3P3N GATE DRIVER)	369
	6.17	6N 预驱(6N GATE DRIVER-SWM21DC8U7/D8U7)	373
	6.18	6N 预驱(6N GATE DRIVER-SWM21DK6U7)	380
	6.19	模拟数字转换器(SAR ADC)	386
	6.20	直接内存存取(DMA)控制器	419
	6.21	旋转坐标计算(CORDIC)	453



	6.22	除法器(DIV)	.464
	6.23	局域网控制器(CAN)	.476
	6.24	MPU 接口(MPU)	.554
	6.25	FLASH 控制器与 ISP 操作	.563
	6.26	比较器(CMP)	.576
	6.27	放大器(OPA)	.589
7	典型应	用电路	.599
8	电气特	性	.600
	8.1	绝对最大额定值	.600
	8.2	DC 电气特性	.601
	8.3	AC 电气特性	.602
	8.4	模拟器件特性	.606
	8.5	3P3N DRIVER 特性	.613
	8.6	6N DRIVER(SWM21DC8U7/D8U7)特性	.615
	8.7	6N DRIVER(SWM21DK6U7)特性	.617
9	封装尺	寸	.620
	9.1	LQFP48	.620
	9.2	QFN48	.621
	9.3	QFN32	.622
	9.4	QFN40	.623
	9.5	SSOP28	.624
	9.6	SSOP24L	.625
10	版本记	큣	.626


图目录

冬	4-1 功能方框图	15
冬	5-1 C8T7 封装管脚配置图	16
冬	5-2 G6S7 封装管脚配置图	17
冬	5-3 SWM21DC8U7 管脚排布	18
冬	5-4 SWM21DD8U7 管脚排布	19
冬	5-5 SWM21DK6U7 管脚排布	20
冬	5-6 SWM21PE6S7 管脚排布	21
冬	5-7 SWM21PG6S7 管脚排布	22
冬	6-1 systic 模块结构图	51
冬	6-2 SysTick 计数时序图	52
冬	6-3 时钟结构框图	68
冬	6-4 端口唤醒示意图	71
冬	6-5 PORTCON 模块结构框图	115



冬	6-6 引脚配置示意图	117
冬	6-7 IO 输入上拉下拉	118
冬	6-8 推挽输出	118
冬	6-9 开漏输出	119
冬	6-10 TIMER 模块结构框图	176
冬	6-11 定时器工作示意图	177
冬	6-12 计数器工作示意图	178
冬	6-13 级联模式工作示意图	179
冬	6-14 脉冲发送示意图	180
冬	6-15 单次高电平捕捉示意图	181
冬	6-16 单次低电平捕捉示意图	181
冬	6-17 HALL 记录值	182
冬	6-18 HALL 对应关系图	182
冬	6-19 BTIMER 模块结构框图	203
冬	6-20 定时器工作示意图	204
冬	6-21 定时器 RELOAD 工作示意图	205
冬	6-22 脉冲发送示意图	206
冬	6-23 QEI 模块结构框图	218
冬	6-24 增量式正交编码盘示意图	219
冬	6-25 三相信号正向/反向旋转时序关系	219
冬	6-26 正交编码器 x4 计数模式示意图	220
冬	6-27 正交编码器 x2 计数模式示意图	220
冬	6-28 QEI 计数器索引复位模式	221
冬	6-29 计数匹配复位模式	221
冬	6-30 WDT 模块结构框图	233
冬	6-31 普通模式 WDT 工作示意图	234
冬	6-32 WDT 配置为 RESET 模式波形图	235
冬	6-33 WDT 配置为中断模式波形图	235
冬	6-34 窗口模式看门狗发生中断及复位与计数值之间的关系示意图	235
冬	6-35 UART 模块结构图	245
冬	6-36 UART 字符格式	246
冬	6-37 自动波特率示意图	247
冬	6-38 LIN Fram 示意图	249
冬	6-39 Break 信号不够长示意图	250
冬	6-40 Break 信号恰好够长示意图	250
冬	6-41 Break 信号足够长示意图	250
冬	6-42 硬件流控	251
冬	6-43 对方发送 8 个数据接收 FIFO 示意图	252
	6-44 对方发送 9 个数据接收 FIFO 示意图	
冬	6-45 发送 FIFO 示意图	253
	6-46 I2C 模块结构框图	
冬	6-47 I2C 通信示意图	267
冬	6-48 Master SCL 周期配置示意图	268

冬	6-49 Master 寄存器时序示意图	.270
冬	6-50 Slave 寄存器时序示意图	.272
冬	6-51 SPI 模块结构框图	.292
冬	6-52 SPI 模式波形图	.293
冬	6-53 SSI 模式单次输出波	.294
冬	6-54 SSI 模式连续输出波形	.294
冬	6-55 SPIFLASH 四线读帧格式	.294
冬	6-56 SPIFALSH 四线模式外部连接图	.295
冬	6-57 PWM 模块结构框图	.312
冬	6-58 PWM 死区示意图	.313
冬	6-59 边沿对齐模式下向上计数时计数器启动与停止波形	.314
冬	6-60 边沿对齐模式下向下计数时计数器启动与停止波形	.315
冬	6-61 中心对齐模式下计数器启动与停止波形	.316
冬	6-62 非对称中心对齐模式下计数器启动与停止波形	.316
冬	6-63 边沿对齐模式下计数器计数过程波形	.317
冬	6-64 中心对称模式下计数器计数过程波形	.317
冬	6-65 PWM 外部信号配置	.318
冬	6-66 硬件刹车控制和软件刹车控制计数器计数情况	.319
冬	6-67 计数器重载波形	.320
冬	6-68 PWM 移相示意图	.321
冬	6-69 边沿对齐模式下 PWM 信号产生波形	.321
冬	6-70 中心对齐模式下 PWM 信号产生波形	.322
冬	6-71 非对称中心对齐模式下 PWM 信号产生波形	.322
冬	6-72 BRK 中心对齐模式下 PWM 信号产生波形	.323
冬	6-73 TRIGGER 控制波形	.324
冬	6-74 重复计数功能波形图	.324
冬	6-75 PWM 触发 ADC 采样示意图	.325
冬	6-76 电平翻转示意图	.326
冬	6-77 挖坑前波形	.327
冬	6-78 挖坑后波形	.327
冬	6-79 预驱电路结构框图	.370
	6-80 参考应用电路图	
冬	6-81 21DC8 Driver 模块结构框图	.374
冬	6-82 驱动连接示意图	.375
冬	6-83 工作电压范围	.376
冬	6-84 VBS 工作区域示意图	.377
冬	6-85 直通防止功能示意图	.378
冬	6-86 死区功能示意图	.378
冬	6-87 参考应用电路图	.379
	6-88 驱动连接示意图	
	6-89 电源工作区示意图	
	6-90 VBS 工作区域示意图	
冬	6-91 直通保护示意图	.384

图 6-92 死区时间保护	384
图 6-93 参考应用电路图	385
图 6-94 ADC 模块结构框图	387
图 6-95 ADC 时钟示意图	388
图 6-96 中心对称模式下 PWM 触发 ADC 采样示意图	389
图 6-97 SAR ADC 连续采样示意图	391
图 6-98 SAR ADC 多通道连续采样示意图	391
图 6-99 DMA 模块结构图	420
图 6-100 DMA 搬运 40 个字流程图	422
图 6-101 握手、非握手信号传输图	423
图 6-102 DMA 启动方式	425
图 6-103 波特率设置示意图	480
图 6-104 MPU 模块结构框图	555
图 6-105 MPU 接口时序图	556
图 6-106 比较器框图	577
图 6-107 比较器迟滞功能示意图	579
图 6-108 SR/IF 与 FILTER1 关系	579
图 6-109 比较器 FILTER1 滤波波形	580
图 6-110 HALL 对应关系图	
图 6-111 P 端分压模式结构示意图	
图 6-112 P 端分压模式结构图	581
图 6-113 放大器框图	
图 6-114 典型放大电路	591
图 6-115 PGA 内部结构图	592
图 6-116 PGA 应用参考图	593
图 7-1 典型应用电路图	
图 8-1 上电复位时间示意图	
图 9-1 LQFP48 封装尺寸图	620
图 9-2 QFN32 封装尺寸图	
图 9-3 QFN32 封装尺寸图	
图 9-4 QFN40 封装尺寸图	
图 9-5 SSOP28 封装尺寸图	624
表格目录	
表格 3-1 SWM211 系列 MCU 选型表	
表格 5-1 PA 复用功能	
表格 5-2 PB 复用功能	
表格 5-3 PM 复用功能	
表格 6-1 存储器映射	
表格 6-2 中断编号及对应外设	
表格 6-3 DMA 各通道操作明细	421

表格	6-4 MPU 模块数据接口	556
表格	8-1 绝对最大额定值	600
表格	8-2 DC 电气特性(Vdd-Vss = 5.0V, Tw =25°C))	601
表格	8-3 内部振荡器特征值	602
表格	8-4 外部 4-16MHz 晶体振荡器	603
表格	8-5 外部振荡器典型电路	604
表格	8-6 SAR ADC 特征值	606
表格	8-7 放大器特征值	607
表格	8-8 比较器特征值	608
表格	8-9LDO 特征值	609
表格	8-10 3P3N DRIVER 绝对最大额定值	613
表格	8-11 3P3N DRIVER 推荐工作范围	613
表格	8-12 3P3N DRIVER 电气特性	614
表格	8-13 3P3N DRIVER 动态电特性	614
表格	8-14 6N DRIVER(SWM21DC8U7/D8U7)绝对最大额定值	615
表格	8-15 6N DRIVER(SWM21DC8U7/D8U7)推荐工作范围	615
表格	8-16 6N DRIVER(SWM21DC8U7/D8U7)电气特性	615
表格	8-17 6N DRIVER(SWM21DC8U7/D8U7)动态电气参数	616
表格	8-18 6N DRIVER(SWM21DK6U7)绝对最大额定值	617
表格	8-19 6N DRIVER(SWM21DK6U7)推荐工作范围	617
表格	8-20 6N DRIVER(SWM21DK6U7)电气特性	618
表格	8-21 6N DRIVER(SWM21DK6U7)动态电特性	619

相关文档

缩写

名称	描述			
ACMP	Analog Comparator Controller			
ADC	Analog-to-Digital Converter			
AES	Advanced Encryption Standard			
АРВ	Advanced Peripheral Bus			
АНВ	Advanced High-Performance Bus			
BOD	Brown-out Detection			
CAN	Controller Area Network			
PWM	Pulse Width Modulation			
FIFO	First In, First Out			
GPIO	General-Purpose Input/Output			
IAP	In Application Programming			
ICP	In Circuit Programming			
ISP	In System Programming			
LDO	Low Dropout Regulator			
MPU	Memory Protection Unit			
NVIC	Nested Vectored Interrupt Controller			
DMA	Direct Memory Access			
PLL	Phase-Locked Loop			

寄存器描述列表缩写约定

名称	描述					
RO	只读(read only)					
wo	只写(write only)					
R/W	读/写(read / write)					
R/W0C	写 0 清零(read/write 0 clear)					
R/W1C	写 1 清零(read/write 1 clear)					
AC	自动清零(auto clear)					
RC	读清零(read clear)					
-	保留(reserve)					

命名规则说明

SWM211C8T6(7)-50

表示引脚间距大小 公司名简写 工作温度: 6: -40~85 CORTEX-M系列 7: -40~105 芯片系列: 封装类型: 0: 数字定制芯片 P: TSSOP; S: SSOP; T: LQFP; 1: 1系列 V: TQFP; U: QFN; H: BGA 2: 2系列 3: 3系列 FLASH大小: 2: 8KB; 4: 16KB; 6: 32KB; 7: 48KB; 8: 64KB; 9: 96KB 系列型号: B: 120KB/128KB; C: 248/256KB 0~9区分 E: 512KB; G: 1024KB 比如USB,LCD等不同外设 引脚数量: 保留位: 默认0 Q: 16pin; F: 20pin; E: 24pin; G: 28pin; 1: 性能升级 K: 32pin; T: 36pin; D: 40pin; P: 44pin; S: 屏幕领域特定型号 C: 48pin; J: 52pin; R: 64pin; V: 100pin; P: 3P3N Prediver W: 128pin; Z: 144pin; I: 176pin N: 6N Prediver

1 概述

SWM211 系列 32 位 MCU(以下简称 SWM211)内嵌 ARM® Cortex®-M0 内核,凭借其出色的性能以及高可靠性、低功耗、代码密度大等突出特点,可应用于工业控制、电机控制、白色家电等多种领域。

SWM211 支持片上包含精度为 1%以内的 12M 时钟及 PLL 模块,最高支持 90MHz 的时钟输出。同时提供最大为 64K 字节的 FLASH 和最大 8K 字节的 SRAM。此外,芯片支持向量表重映射和 CACHE 单周期取指、ISP(在系统编程)操作及 IAP(在应用编程),支持用户可自定义 BOOT 程序和加密操作。

SWM211 外设串行总线包括最多 2 个 UART 接口, 2 个 SPI 接口(一个支持四线 QSPI), 1 个 I2C 接口(支持主/从选择), 1 个 CAN 接口,此外还具有 1 个 16 位看门狗定时器, 3 组 32 位(24 位计数器+8 位预分频)加强型定时器, 4 组 32 位(24 位计数器+8 位预分频)基础型定时器, 1 个 16 位正交编码器(QEI)模块, 1 个 16 位的 MPU 接口模块, 4 通道(每个通道均可扩展为具备死区的互补模式)16 位 PWM 模块, 1 个除法器(DIV), 1 个旋转坐标计算模块(CORDIC), 1 个最多 12 通道、12 位、1MSPS 的逐次逼近型 ADC 模块, 4 路运算放大器, 4 路比较器模块,并提供欠压检测及低电压复位等功能。

2 特性

- 内核
 - 32 位 ARM® Cortex®-M0 内核
 - 24 位系统定时器
 - 工作频率最高 90MHz
 - 硬件单周期乘法
 - 集成嵌套向量中断控制器(NVIC)
 - 通过 SWD 接口仿真及烧录
- 内置 LDO
 - 供电电压范围 2.5V 至 5.5V
- SRAM 存储器
 - 8KB
- FLASH 存储器
 - 64KB/32KB
 - 支持向量表重映射功能
 - 支持 CACHE 单周期取指
 - 支持用户定制 ISP(在系统编程)更新用户程序
 - 支持自定义 BOOT 程序
- 串行接口
 - UART*2, 具有独立 8 字节 FIFO, 最高支持主时钟 16 分频
 - I2C*1,支持7位、10位地址方式,支持 master/slave 模式
 - SPI*2,支持 SPI、SSI、支持 Master/Slave,其中一路支持 4 线 QSPI 模式
 - CAN*1,支持协议 2.0A(11 位标识符)和 2.0B(29 位标识符)
- PWM 控制模块
 - 2组独立4通道16位PWM产生器,每个通道均可扩展为具备死区的互补模式
 - 提供高电平结束或周期开始触发中断
 - 具有普通、互补、中心对称等多种输出模式,支持移相、挖坑等
 - 死区控制
 - 灵活的 ADC 采样触发,可多点触发 ADC 模块
- 定时器模块
 - 3路32位(24位计数器+8位预分频)加强定时器
 - ◆ 具备独立中断
 - ◆ 支持计数器、捕获、脉冲发送等功能
 - ◆ 支持 HALL 接口
 - 4路32位(24位计数器+8位预分频)基础定时器
 - ◆ 具备独立中断
 - ◆ 每个具备独立8位分频
 - ◆ 支持脉冲输出功能
 - 时钟独立的 32 位 WDT 看门狗定时器,溢出后可配置触发中断或复位芯片
 - QEI 旋转编码器模块
- 16 位 MPU 数据接口位宽
- 支持 MPU 接口

- 接口时序可调
- 输出时钟可配置为空闲时关闭
- 通过 MCU 或者 DMA 工作
- GPIO
 - 最多可达 43 个 GPIO
 - 可配置 4 种 IO 模式
 - ◆ 上拉输入
 - ◆ 下拉输入
 - ◆ 推挽输出
 - ◆ 开漏输出
 - 灵活的中断配置
 - ◆ 触发类型设置(边沿检测、电平检测)
 - ◆ 触发电平设置(高电平、低电平)
 - ◆ 触发边沿设置(上升沿、下降沿、双边沿)
- 模拟外设
 - 12 位 1MSPS 高精度 SAR ADC, 共计 12 通道, 支持内置 5V/3.6V 基准
 - ◆ 采样率高达 1MSPS
 - ◆ 支持 single/scan 两种模式
 - ◆ 独立结果寄存器
 - ◆ 提供独立 FIFO
 - ◆ 可由软件/PWM/TIMER 触发
 - OPA*4
 - ◆ 3 路支持内置 PGA, 支持 10/15/20 倍放大
 - ◆ 输出可直接进入 ADC 通道
 - ◆ 支持内置输出 2.5V 偏置
 - CMP*4
 - ◆ CMP0/1/2 输出可直接连接至 HALL 信号
 - ◆ CMP3 输出可直接连接至 PWM 刹车信号
 - ◆ 内置 8 位 DAC 基准输出
 - ◆ 可滤波
- 欠压检测
 - 支持欠压检测
 - 支持多级欠压中断和复位选择
- 时钟源
 - 12MHz 精度可达 1%的片内时钟源
 - 内置 PLL,最高可输出 90MHz 时钟
 - 32KHz 片内时钟源
 - 4~16MHz 片外高频晶振
- CORDIC
 - 14 个时钟迭代得到结果
 - 计算 sin 和 cos 时,输入弧度范围建议在 0.01~1.56
 - 计算 arctan 数值范围建议在 0.05~10000
 - 输出结果支持查询和中断方式

DIV

- 支持 32 位整数除法运算及求余运算
- 支持 32 位开方运算,支持小数位
- 除法单次运算最多耗时 32 个时钟, 开方单次运算耗时 16/32 个时钟
- 支持有符号数和无符号数运算
- 3P3N GATE DRIVER
 - 40V
 - 5V/30ma LDO 输出
 - 集成死区时间: 50ns (TYP)
- 6N GATE DRIVER(SWM21DC8U7)
 - 悬浮绝对电压+250V
 - 电源电压工作范围 5V-20V
 - 输出电流 1.5A/1.8A (TYP)
 - 死区时间 250ns(TYP)
- 其 6N GATE DRIVER(SWM21DK6U7)
 - 悬浮绝对电压 75V
 - VM 电压范围 10.0-70.0V
 - 输出电流+1.5A/-1.8A(TYP)
 - 死区时间 250ns (TYP)
 - PVDD 和 VBS 欠压保护
 - 5V LDO
 - 輸出短路保护
- 其他
 - 自定义 BOOT 程序
 - 96 位 独立 ID
- 环境
 - 工作温度: -40°C~105°C
 - 保存温度: -50°C~150°C
 - 湿度等级: MSL3
- 封装
 - LQFP48
 - QFN48
 - QFN32
 - SSOP28
- 应用范围
 - 仪器仪表
 - 工业控制
 - 电机驱动
 - 白色家电
 - 可穿戴设备

3 选型指南

表格 3-1 SWM211 系列 MCU 选型表

Part Number	Voltage	Flash	SRAM	1/0	Tim	PWM	QEI	UART	SPI	I2C	CAN	CORDIC	DIV	180	SARADC	ОРА	СМР	Package
	(V)	(KB)	(KB)															
SWM211C8T7-50	2.5~5.5	64	8	43	3+4+1	2(8)	1	2	2	1	1	1	1	1	1(11)	4	4	LQFP48
SWM211G6S7-65	2.5~5.5	32	8	24	3+4+1	2(8)	1	2	1	1	1	1	1	0	1(10)¹	3 ¹	4 ²	SSOP28
SWM21DC8U7-50	2.5~5.5	64	8	27	3+4+1	2(8)	1	2	2	1	1	1	1	0	1(11)	2 ¹	4 ²	QFN48
SWM21DD8U7-40	2.5~5.5	64	8	20	3+4+1	2(8)	1	2	13	1	1	1	1	0	1(9)	3	4 ²	QFN40
SWM21DK6U7-50	2.5~5.5	32	8	12	3+4+1	2(6)	1	1	0	1	0	1	1	0	1(7)	2	4 ²	QFN32
SWM21PE6S7-63	2.5~5.5	32	8	15	3+4+1	2(5)	1	2	0	1	0	1	1	0	1(7)	3	4 ²	SSOP24L
SWM21PG6S7-65	2.5~5.5	32	8	15	3+4+1	2(5)	1	2	0	1	1	1	1	0	1(8)	2	4 ²	SSOP28

注1: OPA1/2 输出端分别连接 ADC 通道 CH2 和 CH1, 未封出引脚, 在 PGA 模式可用

注 2: CMP0/1/2 反向端连接内部 VREF

注3: SPI 仅有SPI1SCLK/SPI1MOSI 引脚

^{*} SWM211G6S7/SWM21DK6U7/SWM21PG6S7 无法使用 ISP

^{* 21}P 系列集成 P-N 型 MOSDRIVER

^{* 21}D 系列集成 6N 型 MOSDRIVER

4 功能方框图

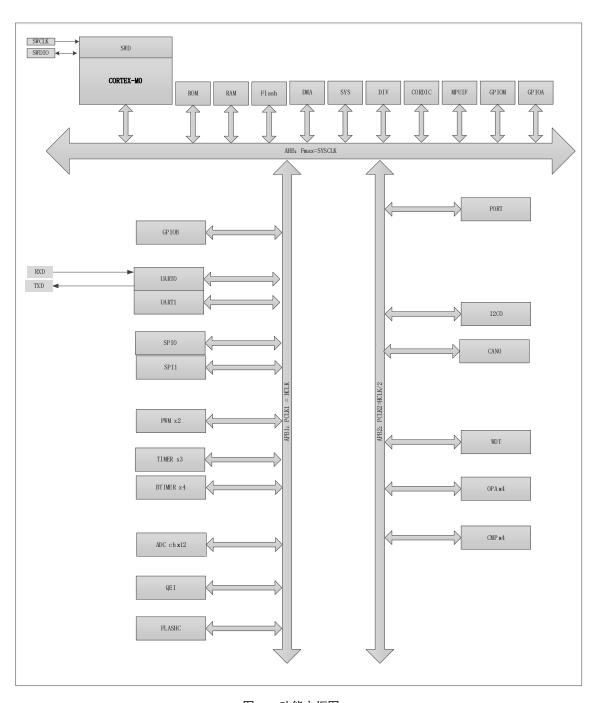


图 4-1 功能方框图

5 管脚配置

5.1 SWM211C8T7

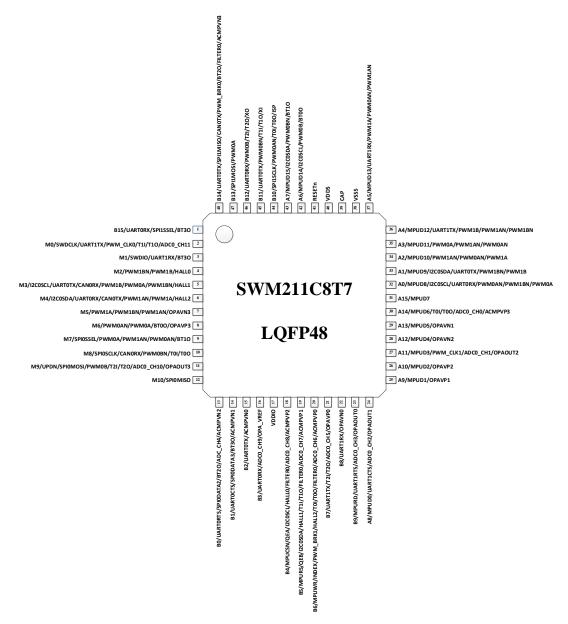


图 5-1 C8T7 封装管脚配置图

5.2 SWM211G6S7

RESETN 1		28 VDD5
B11/UARTOTX/PWM0BN/T1I/T1O/XI 2		27 CAP
B12/UART0RX/PWM0B/T2I/T2O/XO 3		26 VSS5
B14/UART0TX/CAN0TX/PWM_BRK0/BT20/FILTER0/ACMPVN3 4		25 A5/UART1RX/PWM1A/PWM0AN/PWM1AN
M0/SWDCLK/UART1TX/PWM_CLK0/T1I/T10/ADC0_CH11 5		24 A4/UART1TX/PWM1B/PWM1AN/PWM1BN
M1/SWDIO/UART1RX/BT3O 6	SWM211G6S7	23 A3/PWM0A/PWM1AN/PWM0AN
M8/SPIOSCLK/CANORX/PWM0BN/T0I/T0O 7	2 111211002	22 A2/PWM1AN/PWM0AN/PWM1A
M9/UPDN /SPI0MOSI/PWM0B/T2I/T2O/ADC0_CH10 8		21 A1/I2COSDA/UARTOTX/PWM1BN/PWM1B
B4 /QEA/I2COSCL/HALLO/FILTERO/ADCO_CH8/ACMPVP2 9	SSOP28	20 A0/I2COSCL/UARTORX/PWM0AN/PWM1BN/PWM0A
B5/QEB/I2C0SDA/HALL1/T1I/T10/FILTER0/ADC0_CH7/ACMPVP1 10		19 A14/T0I/T0O/ADCO_CH0/ACMPVP3
B6/INDEX/PWM_BRK1/HALL2/T0I/T0O/FILTER0/ADC0_CH6/ACMPVP0 11		18 A13/OPAVN1
B7/UART1TX/T2I/T2O/ADCO_CH5/OPAVPO 12		17 A12/OPAVN2
B8/UART1RX/OPAVNO 13		16 A10/OPAVP2
B9 /UART1RTS/ADC0_CH3/OPAOUT0 14		15 A9/OPAVP1
,		/

图 5-2 G6S7 封装管脚配置图

5.3 SWM21DC8U7

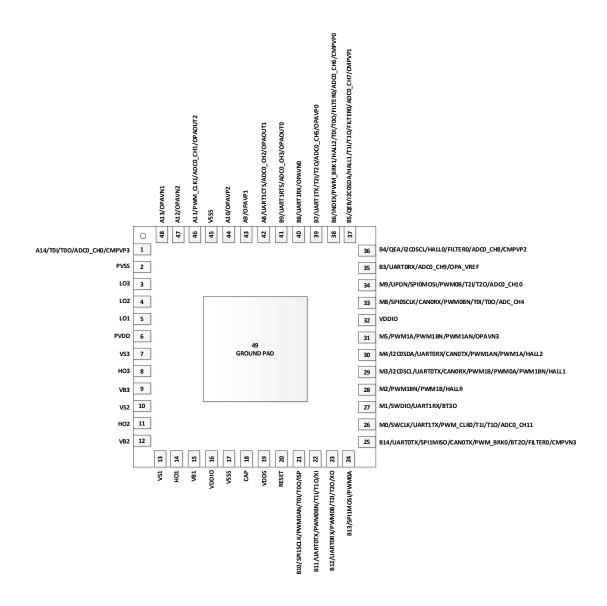


图 5-3 SWM21DC8U7 管脚排布

5.4 SWM21DD8U7

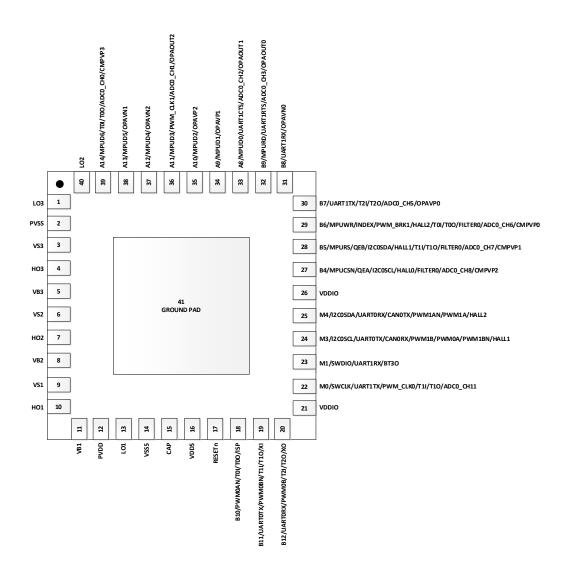


图 5-4 SWM21DD8U7 管脚排布

5.5 SWM21DK6U7

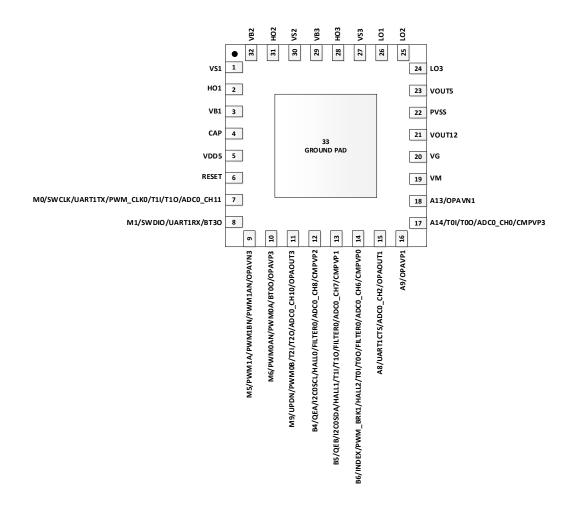
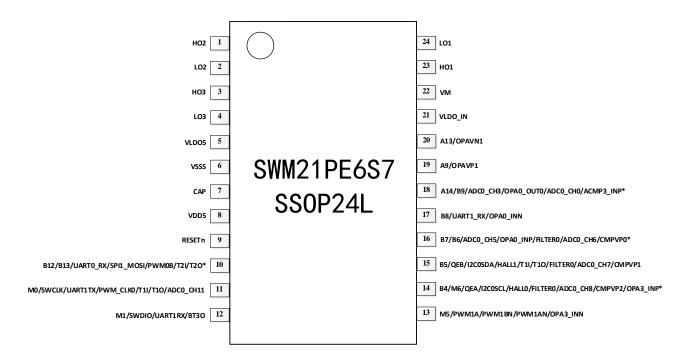



图 5-5 SWM21DK6U7 管脚排布

5.6 SWM21PE6S7

注:带*引脚因篇幅问题未能描述详尽,具体功能参见注释

图 5-6 SWM21PE6S7 管脚排布

5.7 SWM21PG6S7

VLDO5 1 VLDO_IN 2 VM 3 HO1 4 LO1 5 HO2 6 LO2 7 HO3 8 LO3 9 VSS5 10 CAP 11 VDDS 12 RESETD 13	SWM21PG6S7 SSOP28	28 A14/T0I/T0O/ADC0_CH0/CMPVP3 27 A13/OPAVN1 28 A12 28 A10 21 A9/OPAVP1 22 B7/UART1TX/T2I/T2O/ADC0_CH5 21 B6/INDEX/PWM_BRK1/HALL2/T0I/T0O/FILTER0/ADC0_CH6/CMPVP0 20 B5/QEB/I2COSDA/HALL1/T1I/T1O/FILTER0/ADC0_CH7/CMPVP1 19 B4/QEA/I2COSCL/HALL0/FILTER0/ADC0_CH8/CMPVP2 18 M4/I2COSDA/UART0TX/CAN0TX/PWM1AN/PWM1A/HALL2/ADC_CH4 17 M3/I2COSCL/UART0TX/CANOTX/PWM1B/PWM0A/PWM1BN/HALL1 16 M2/PWM1BN/PWM1B/HALL0
RESETN 13 M0/SWCLK/UART1TX/PWM_CLK0/T1/T10/ADC0_CH11 14		16 M2/PWM1BN/PWM1B/HALL0 15 M1/SWDIO/UART1RX/BT3O

图 5-7 SWM21PG6S7 管脚排布

5.8 管脚定义

	管脚	号								
1C8T7	1G6S7	DC8U7	DK6U7	PE6S7	PG6S7	DD8U7	管脚名称	可复用功能	型型	描述
1	/	/	/	/	/	/	B15	UARTORX/ SPI1SSEL/ BT3O	I/O	B15: 数字 GPIO 功能引脚; UARTORX: UARTO 模块接收数据引脚; SPI1SSEL: SPIO 模块使能引脚; BT3O: BTIMER 模块输出引脚;
2	5	26	7	11	14	22	MO	SWDCLK/ UART1TX/ PWM_CLK0/ T1I/ T1O/ ADC0_CH11	1/0	MO:数字 GPIO 功能引脚; SWDCLK: SWD 下载接口时钟引脚; UART1TX: UART1 模块发送数据引脚; PWM_CLKO: PWM 模块 CLK 引脚; T1I: TIMER1 模块输入捕获引脚; T1O: TIMER1 模块输出比较引脚; ADCO_CH11: ADCO 模块通道 11 输入引脚;
3	6	27	8	12	15	23	M1	SWDIO/ UART1RX/ BT3O	I/O	M1: 数字 GPIO 功能引脚; SWDIO: SWD 下载接口的数据线引脚; UART1RX: UART1 模块接收数据引脚; BT3O: BTIMER 模块输出引脚;
4	/	28	/	/	16	/	M2	PWM1BN/ PWM1B /HALL0	I/O	M2: 数字 GPIO 功能引脚; PWM1BN: PWM 模块第 1 组 B 路反向输出引脚; PWM1B: PWM 模块第 1 组 B 路输出引脚; HALLO: 霍尔模块输入引脚;
5	/	29	/	/	17	24	М3	I2COSCL/ UARTOTX/ CANORX/ PWM1B/ PWM0A/ PWM1BN/ HALL1	1/0	M3: 数字 GPIO 功能引脚; I2COSCL: I2CO 模块时钟引脚; UARTOTX: UARTO 模块发送数据引脚; CANORX: CAN 模块数据接收引脚; PWM1B: PWM 模块第 1 组 B 路输出引脚; PWM0A: PWM 模块第 0 组 A 路输出引脚; PWM1BN: PWM 模块第 1 组 B 路反向输出引脚; HALL1: 霍尔模块输入引脚;
6	/	30	/	/	18	25	M4	I2COSDA/ UARTORX/ CANOTX/ PWM1AN/ PWM1A/ HALL2 ADCO_CH4	1/0	M4: 数字 GPIO 功能引脚; I2COSDA: I2CO 模块数据引脚; UARTORX: UART 模块接收数据引脚; CANOTX: CAN 模块数据发送引脚; PWM1AN: PWM 模块第 1 组 A 路反向输出引脚; PWM1A: PWM 模块第 1 组 A 路输出引脚; HALL2: 霍尔模块输入引脚; ADCO_CHO: ADCO 模块通道 0 输入引脚;

	管脚-	 号								
1C8T7	1G6S7	DC8U7	DK6U7	PE6S7	PG6S7	DD8U7	管脚名 称	可复用功能	类 型	描述
7	/	31	9	13	/	/	M5	PWM1A/ PWM1BN/ PWM1AN/ OPAVN3	1/0	M5: 数字 GPIO 功能引脚; PWM1A: PWM 模块第1组A路输出引脚; PWM1BN: PWM 模块第1组B路反向输出引脚; PWM1AN: PWM 模块第1组A路反向输出引脚; OPAVN3: OPA3 模块N端输入引脚;
/	/	32	/	/	/	26	VDDIO		S	VDDIO:芯片 IO 电源功能引脚;
8	/	/	10	14	/	/	M6	PWMOAN/ PWMOA/ BTOO/ OPAVP3	1/0	M6: 数字 GPIO 功能引脚; PWMOAN: PWM 模块第 0 组 A 路反向输出引脚; PWMOA: PWM 模块第 0 组 A 路输出引脚; BTOO: BTIMER 模块输出引脚; OPAVP3: OPA3 模块 P 端输入引脚;
9	/	/	/	/	/	/	M7	SPIOSSEL/ PWM0A/ PWM1AN/ PWM0AN/ BT10	1/0	M7: 数字 GPIO 功能引脚; SPIOSSEL: SPI 模块 SSEL 引脚; PWM0A: PWM 模块第 0 组 A 路输出引脚; PWM1AN: PWM 模块第 1 组 A 路反向输出引脚; PWM0AN: PWM 模块第 0 组 A 路反向输出引脚; BT1O: BTIMER 模块输出引脚;
10	7	33	/	/	/	/	M8	SPIOSCLK/ CANORX/ PWMOBN/ TOI/ TOO/ ADCO_CHO	1/0	M8: 数字 GPIO 功能引脚; SPIOSCLK: SPIO 模块的主机时钟引脚; CANORX: CAN 模块数据输入引脚; PWMOBN: PWM 模块第 0 组 B 路反向输出引脚; TOI: TIMERO 模块输入捕获引脚; TOO: TIMERO 模块输出比较引脚; ADCO_CHO: ADCO 模块通道 0 输入引脚; 注: M8 引脚有强制上拉且无法关闭
11	8	34	11	/	/	/	M9	UPDN/ SPIOMOSI/ PWM0B/ T2I/ T2O/ ADCO_CH10/ OPAOUT3	I/O	M9: 数字 GPIO 功能引脚; UPDN: 编码器模块 UPDN 引脚; SPIOMOSI: SPIO 模块的主机发送引脚; PWMOB: PWM 模块第 0 组 B 路输出引脚; T2I: TIMER2 模块输入捕获引脚; T2O: TIMER2 模块输出比较引脚; ADCO_CH1O: ADCO 模块通道 10 输入引脚; OPAOUT3: OPA3 模块输出引脚;
12	/	/	/	/	/	/	M10	SPIOMISO/	1/0	M10:数字 GPIO 功能引脚; SPIOMISO:SPIO 模块的主机接收引脚; 注:M10 引脚有强制上拉且无法关闭

	管脚-	— <u>—</u> 号								
1C8T7	1G6S7	DC8U7	DK6U7	PE6S7	PG6S7	DD8U7	管脚名 称	可复用功能	类 型	描述
13	/	/	/	/	/	/	во	UARTORTS/ SPIODATA2/ BT2O/ ADCO_CH4 ACMPVN2	1/0	BO:数字 GPIO 功能引脚; UARTORTS: UARTO 模块接收请求引脚; SPIODATA2: SPI 模块四线模式 DATA 引脚; BT2O: BTIMER 模块输出引脚; ADCO_CH4: ADCO 模块通道 4 输入引脚; ACMPVN2:比较器 2 N 端输入引脚;
14	/	/	/	/	/	/	B1	UARTOCTS/ SPIODATA3/ BT3O/ ACMPVN1	1/0	B1: 数字 GPIO 功能引脚; UARTOCTS: UARTO 模块发送允许引脚; SPIODATA3: SPI 模块四线模式 DATA 引脚; BT3O: BTIMER 模块输出引脚; ACMPVN1: 比较器 1 N 端输入引脚;
15	/	/	/	/	/	/	B2	UARTOTX/ ACMPVN0	1/0	B2: 数字 GPIO 功能引脚; UARTOTX: UARTO 模块发送数据引脚; ACMPVNO: 比较器 0 N 端输入引脚;
16	/	35	/	/	/	/	В3	UARTORX/ ADC0_CH9/ OPA_VREF	1/0	B3: 数字 GPIO 功能引脚; UARTORX: UARTO 模块接收数据引脚; ADCO_CH9: ADCO 模块通道 9 输入引脚; OPA_VREF: PGA 模式偏置电压输出引脚;
17	/	/	/	/	/	/	VDDIO		S	VDDIO:芯片 IO 电源功能引脚;
18	9	36	12	14	19	27	B4	MPUCSN/ QEA/ 12C0SCL/ HALL0/ FILTER0/ ADC0_CH8/ ACMPVP2	I/O	B4: 数字 GPIO 功能引脚; MPUCSN: MPU 模块 CS 信号引脚; QEA: 编码器模块 A 相输入引脚; I2COSCL: I2CO 模块时钟引脚; HALLO: 霍尔模块输入引脚; FILTERO: IO 引脚数字滤波功能; ADCO_CH8: ADCO 模块通道 8 输入引脚; ACMPVP2: 比较器 2 P 端输入引脚;
19	10	37	13	15	20	28	B5	MPURS/ QEB/ I2COSDA/ HALL1/ T1I/ T1O/ FILTERO/ ADCO_CH7/ ACMPVP1	1/0	B5: 数字 GPIO 功能引脚; MPURS: MPU 模块 RS 信号引脚; QEB: 编码器模块 B 相输入引脚; I2COSDA: I2CO 模块数据引脚; HALL1: 霍尔模块输入引脚; T1I: TIMER1 模块输入捕获引脚; T1O: TIMER1 模块输出比较引脚; ADCO_ CH7: ADCO 模块通道 7 输入引脚; ACMPVP1: 比较器 1 P 端输入引脚;

	管脚-	 号								
1C8T7	1G6S7	DC8U7	DK6U7	PE6S7	PG6S7	DD8U7	管脚名 称	可复用功能	类型	描述
20	11	38	14	16	21	29	В6	MPUWR/ INDEX/ PWM_BRK1/ HALL2/ TOI/ TOO/ FILTERO/ ADCO_CH6/ ACMPVPO	I/O	B6: 数字 GPIO 功能引脚; MPUWR: MPU 模块 WR 信号引脚; INDEX: 编码器模块索引相输入引脚; PWM_BRK1: PWM 模块的 BRAKE1 引脚; HALL2: 霍尔模块输入引脚; TOI: TIMERO 模块输入捕获引脚; TOO: TIMERO 模块输出比较引脚; FILTERO: IO 引脚数字滤波功能; ADCO_CH6: ADCO 模块通道 6 输入引脚; ACMPVPO: 比较器 0 P 端输入引脚;
21	12	39	/	16	22	30	B7	UART1TX/ T2I/ T2O/ ADC0_CH5/ OPAVP0	1/0	B7: 数字 GPIO 功能引脚; UART1TX: UART1 模块发送引脚; T2I: TIMER2 模块输入捕获引脚; T2O: TIMER2 模块输出比较引脚; ADCO_ CH5: ADCO 模块通道 5 输入引脚; OPAVPO: 放大器 0 P 端输入引脚;
22	13	40	/	17	/	31	В8	UART1RX/ OPAVN0	1/0	B8: 数字 GPIO 功能引脚; UART1RX: UART1 模块接收数据引脚; OPAVNO: 放大器 0 N 端输入引脚;
23	14	41	/	18	/	32	B9	MPURD/ UART1RTS/ ADC0_CH3/ OPAOUT0	1/0	B9: 数字 GPIO 功能引脚; MPURD: MPU 模块 RD 信号引脚; UART1RTS: UART1 模块接收请求引脚; ADCO_CH3: ADCO 模块通道 3 输入引脚; OPAOUTO: 放大器 0 输出引脚;
24	/	42	15	/	23	33	A8	MPUDO/ UART1CTS/ ADCO_CH2/ OPAOUT1	1/0	A8: 数字 GPIO 功能引脚; MPUD0: MPU 模块数据引脚; UART1CTS: UART1 模块发送允许引脚; ADC0_CH2: ADC0 模块通道 2 输入引脚; OPAOUT1: 放大器 1 输出引脚;
25	15	43	16	19	24	34	A9	MPUD1/ OPAVP1	I/O	A9: 数字 GPIO 功能引脚; MPUD1: MPU 模块数据引脚; OPVP1: 放大器 1 P 端输入引脚;
26	16	44	/	/	25	35	A10	MPUD2/ OPAVP2	I/O	A10: 数字 GPIO 功能引脚; MPUD2: MPU 模块数据引脚; OPAVP2: 放大器 2 P 端输入引脚;
/	/	45	/	6	/	/	VSS5		S	VSS5: 芯片主地功能引脚;

	管脚	号								
1C8T7	16657	2N820	ZN9XO	PE6S7	PG6S7	1 0800	管脚名 称	可复用功能	类 型	描述
27	/	46	/	/	/	36	A11	MPUD3/ PWM_CLK1/ ADC0_CH1/ OPAOUT2	1/0	A11: 数字 GPIO 功能引脚; MPUD3: MPU 模块数据引脚; PWM_CLK1: PWM 的 CLK 引脚; ADC0_CH1: ADC0 模块通道 1 输入引脚; OPAOUT2: 放大器 2 输出引脚;
28	17	47	/	/	26	37	A12	MPUD4/ OPAVN2	I/O	A12: 数字 GPIO 功能引脚; MPUD4: MPU 模块数据引脚; OPAVN2: 放大器 2 N 端输入引脚;
29	18	48	18	20	27	38	A13	MPUD5/ OPAVN1	1/0	A13: 数字 GPIO 功能引脚; MPUD5: MPU 模块数据引脚; OPAVN1: 放大器 1 N 端输入引脚;
30	19	1	17	18	28	39	A14	MPUD6/ TOI/ TOO/ ADCO_CHO/ ACMPVP3	1/0	A14:数字 GPIO 功能引脚; MPUD6: MPU 模块数据引脚; TOI: TIMERO 模块输入捕获引脚; TOO: TIMERO 模块输出比较引脚; ADCO_CHO: ADCO 模块通道 0 输入引脚; ACMPVP3:比较器 3 P 端输入引脚;
31	/	/	/	/	/	/	A15	MPUD7	1/0	A15:数字 GPIO 功能引脚; MPUD7: MPU 模块数据引脚;
32	20	/	/	/	/	1	AO	MPUD8/ I2COSCL/ UARTORX/ PWMOAN/ PWM1BN/ PWM0A	I/O	AO: 数字 GPIO 功能引脚; MPUD8: MPU 模块数据引脚; I2COSCL: I2CO 模块时钟引脚; UARTORX: UARTO 模块数据接收引脚; PWMOAN: PWM 模块第 0 组 A 路反向输出引脚; PWM1BN: PWM 模块第 1 组 B 路反向输出引脚; PWMOA: PWM 模块第 0 组 A 路输出引脚;
33	21	/	/	/	/	/	A1	MPUD9/ I2COSDA/ UARTOTX/ PWM1BN/ PWM1B	1/0	A1: 数字 GPIO 功能引脚; MPUD9: MPU 模块数据引脚; I2COSDA: I2CO 模块数据引脚; UARTOTX: UARTO 模块数据发送引脚; PWM1BN: PWM 模块第 1 组 B 路反向输出引脚; PWM1B: PWM 模块第 1 组 B 路输出引脚;
34	22	/	/	/	/	/	A2	MPUD10/ PWM1AN/ PWM0AN/ PWM1A	1/0	A2: 数字 GPIO 功能引脚; MPUD10: MPU 模块数据引脚; PWM1AN: PWM 模块第 1 组 A 路反向输出引脚; PWM0AN: PWM 模块第 0 组 A 路反向输出引脚; PWM1A: PWM 模块第 1 组 A 路输出引脚;

	管脚-	— <u>—</u> 号								
1C8T7	16657	2080D	ркеи7	PE6S7	PG6S7	70800	管脚名 称	可复用功能	类 型	描述
35	23	/	/	/	/	/	А3	MPUD11/ PWM0A/ PWM1AN/ PWM0AN	1/0	A3 数字 GPIO 功能引脚; MPUD11: MPU 模块数据引脚; PWMOA: PWM 模块第 0 组 A 路输出引脚; PWM1AN: PWM 模块第 1 组 A 路反向输出引脚; PWMOAN: PWM 模块第 0 组 A 路反向输出引脚;
36	24	/	/	/	/	/	A4	MPUD12/ UART1TX/ PWM1B/ PWM1AN/ PWM1BN	1/0	A4: 数字 GPIO 功能引脚; MPUD12: MPU 模块数据引脚; UART1TX: UART1 模块发送引脚; PWM1B: PWM 模块第 1 组 B 路输出引脚; PWM1AN: PWM 模块第 1 组 A 路反向输出引脚; PWM1BN: PWM 模块第 1 组 B 路反向输出引脚;
37	25	/	/	/	/	/	A5	MPUD13/ UART1RX/ PWM1A/ PWM0AN/ PWM1AN	1/0	A5: 数字 GPIO 功能引脚; MPUD13: MPU 模块数据引脚; UART1RX: UART1 模块接收引脚; PWM1A: PWM 模块第 1 组 A 路输出引脚; PWM0AN: PWM 模块第 0 组 A 路反向输出引脚; PWM1AN: PWM 模块第 1 组 A 路反向输出引脚;
/	/	/	/	5	1	/	VLDO5		S	VLDO5:输出电压脚,外接电容;
/	/	/	/	21	2	/	VLDO_I N		ı	VLDO_IN: LDO 电源供电脚,低于 12V 电压时可以和 PVDD 短接;
/	/	/	19	22	3	/	VM		I	VM: 预驱电源供电脚;
/	/	/	20	/	/	/	VG		0	VG:外置 MOS 的栅极驱动脚;
/	/	/	21	/	/	/	VOUT 12		S	VOUT12: 12V LDO 输出脚,连接外置 NPN 或者 NMOS 的源端
/	/	2	22	/	/	2	PVSS		S	PVSS: 预驱芯片地引脚;
/	/	3	24	4	9	1	LO3		0	LO3: 低侧输出 3;
/	/	4	25	2	7	40	LO2		0	LO2: 低侧输出 2;
/	/	5	26	24	5	13	LO1		0	LO1: 低侧输出 1;
/	/	6	/	/	/	12	PVDD		S	PVDD: 预驱供电电压引脚;
/	/	7	27	/	/	3	VS3		I	VS3: 高侧浮动偏移电压 3;
/	/	8	28	3	8	4	HO3		0	HO3: 高侧输出 3;
/	/	9	29	/	/	5	VB3		I	VB3: 高侧浮动电压 3;
/	/	10	30	/	/	6	VS2		I	VS2: 高侧浮动偏移电压 2;
/	/	11	31	1	6	7	HO2		0	HO2: 高侧输出 2;
/	/	12	32	/	/	8	VB2		I	VB2: 高侧浮动电压 2;
/	/	13	1	/	/	9	VS1		I	VS1: 高侧浮动偏移电压 1;
/	/	14	2	23	4	10	HO1		0	HO1: 高侧输出 1;
/	/	15	3	/	/	11	VB1		I	VB1: 高侧浮动电压 1;

	管脚-	 号								
1C8T7	16657	DC8U7	DK6U7	PE6S7	PG6S7	7U8QQ	管脚名 称	可复用功能	类型	描述
/	/	16	/	/	/	/	VDDIO		S	VDDIO: 芯片 IO 电源功能引脚;
38	26	17	/	6	10	14	VSS5		S	VSS5: 芯片主地功能引脚;
39	27	18	4	7	11	15	CAP		S	CAP: 电容引脚; 注: 需要对地连接一个 1uF 电容
40	28	19	5	8	12	16	VDD5		S	VDD5: 芯片电源功能引脚;
41	1	20	6	9	13	17	RESETn		I/O	RESETn: 芯片复位功能引脚,低电平复位;
42	/	/	/	/	/	/	A6	MPUD14/ I2COSCL/ PWM0B/ BT0O	1/0	A6: 数字 GPIO 功能引脚; MPUD14: MPU 模块数据引脚; I2COSCL: I2CO 模块时钟引脚; PWMOB: PWM 模块第 0 组 B 路输出引脚; BTOO: BTIMER 模块输出引脚;
43	/	/	/	/	/	/	A7	MPUD15/ I2COSDA/ PWM0BN/ BT1O	1/0	A7: 数字 GPIO 功能引脚; MPUD15: MPU 模块数据引脚; I2COSDA: I2CO 模块数据引脚; PWMOBN: PWM 模块第 0 组 B 路反向输出引脚; BT1O: BTIMER 模块输出引脚;
44	/	21	/	/	/	18	B10	SPI1SCLK/ PWM0AN/ TOI/ TOO/ ISP	1/0	B10:数字 GPIO 功能引脚; SPI1SCLK: SPI 模块主机时钟引脚; PWM0AN: PWM 模块第 0 组 A 路反向输出引脚; TOI: TIMERO 模块输入捕获引脚; TOO: TIMERO 模块输出比较引脚; ISP: 芯片 ISP 引脚;
45	2	22	/	/	/	19	B11	UARTOTX/ PWM0BN/ T1I/ T1O/ XI	1/0	B11: 数字 GPIO 功能引脚; UARTOTX: UARTO 模块发送引脚; PWMOBN: PWM 模块第 0 组 B 路反向输出引脚; T1I: TIMER1 模块输入捕获引脚; T1O: TIMER1 模块输出比较引脚; XI: 外部晶振输入引脚;
46	3	23	/	10	/	20	B12	UARTORX/ PWMOB/ T2I/ T2O/ XO	1/0	B12: 数字 GPIO 功能引脚; UARTORX: UARTO 模块接收数据引脚; PWMOB: PWM 模块第 0 组 B 路输出引脚; T2I: TIMERO 模块输入捕获引脚; T2O: TIMERO 模块输出比较引脚; XO: 外部晶振输出引脚;
/	/	/	/	/	/	21	VDDIO		S	VDDIO: 芯片 IO 电源功能引脚;
47	/	24	/	10	/	/	B13	SPI1MOSI/ PWM0A	I/O	B13: 数字 GPIO 功能引脚; SPI1MOSI: SPI 模块的主机发送引脚; PWM0A: PWM 模块第 0 组 A 路输出引脚;

	管脚-	号 一								
1C8T7	1G6S7	DC8U7	DK6U7	PE6S7	PG6S7	DD8U7	管脚名 称	可复用功能	型	描述
48	4	25	/	/	/	/	B14	UARTOTX/ SPI1MISO/ CANOTX/ PWM_BRKO/ BT2O/ FILTERO/ ACMPVN3	I/O	B14: 数字 GPIO 功能引脚; UARTOTX: UARTO 模块发送引脚; SPI1MISO: SPI 模块的主机接收引脚; CANOTX: CAN 模块数据发送引脚; PWM_BRKO: PWM 模块的 BRAKEO 引脚; BT2O: BTIMER 模块输出引脚; FILTERO: IO 管脚数据滤波功能; ACMPVN3: 比较器 3N 端输入引脚;

注1: I=输入, O=输出, S=电源

注2: ISP 方式的串口烧录时,默认使用 M1 (RX)/M0 (TX)作为串口通讯使用

注3:不同封装所对应的引脚功能不同,请以相应型号对应的管脚图为准

注4: M8/M10 引脚有强制上拉且无法关闭

5.9 管脚复用功能

表格 5-1 PA 复用功能

管脚名称	SEL0001	SEL0010	SEL0011	SEL0100	SEL0101	SEL0110	SEL0111	SEL1000	SEL1111	其他
PA0	MPUD8	I2C0SCL	UARTORX	PWM0AN	PWM1BN	PWM0A	-	-	-	-
PA1	MPUD9	I2C0SDA	UART0TX	PWM1BN	PWM1B	-	-	-	-	-
PA2	MPUD10	PWM1AN	PWM0AN	PWM1A	-	-	_	-	-	-
PA3	MPUD11	PWM0A	PWM1AN	PWM0AN	-	-	-	-	-	-
PA4	MPUD12	UART1TX	PWM1B	PWM1AN	PWM1BN	-	-	-	-	-
PA5	MPUD13	UART1RX	PWM1A	PWM0AN	PWM1AN	-	-	-	-	-
PA6	MPUD14	I2C0SCL	PWM0B	втоо	-	-	_	-	-	-
PA7	MPUD15	I2C0SDA	PWM0BN	BT10	-	-	_	-	-	-
DAO	MARLIDO	LIADT1CTC							ADC0_CH2	
PA8	MPUD0	UART1CTS	_				_		/OPAOUT1	-
PA9	MPUD1	-	-	-	-	-	_	-	OPAVP1	-
PA10	MPUD2		_	-	-	-	_	-	OPAVP2	-
DA 4.4	MDLIDS	DVA/A/CLI/A							ADC0_CH1	
PA11	MPUD3	PWMCLK1							/OPAOUT2	
PA12	MPUD4	-	_	-	-	-	_	_	OPAVN2	-
PA13	MPUD5	-	_	-	-	-	_	_	OPVN1	-
DA 1.4	MARLIDE	TOI	T00						ADC0_CH0	
PA14	MPUD6	TOI	T0O						/ACMPVP3	
PA15	MPUD7	-	-	-	-	-	-	-	-	_

表格 5-2 PB 复用功能

管脚名称	SEL0001	SEL0010	SEL0011	SEL0100	SEL0101	SEL0110	SEL0111	SEL1000	SEL1111	其他
РВ0	UARTORTS	SPI0DATA2	вт20	-	-		-	-	ACMPVN2	-
PB1	UARTOCTS	SPI0DATA3	втзо	-	-	-	-	-	ACMPVN1	-
PB2	UART0TX	-	-	-	-	-	-	-	ACMPVN0	-
PB3	UARTORX	-	-	-	-	-	-		ADC0_CH9	-
PB4	MADUICENI	OFA	I2C0SCL	HALLO	FILTERO				ADC0_CH8	
PD4	MPUCSN	QEA	12CUSCL	HALLU	FILIERU		Ī		/ACMPVP2	_
PB5	MPURS	QEB	I2C0SDA	HALL1	T1I	T10	FILTERO		ADC0_CH7	
PDS	IVIPURS	QEB	IZCUSDA	HALLI	111	110	FILIERU		/ACMPVP1	-
PB6	MPUWR	INDEX	PWMBRK1	шліі 2	TOI	тоо	FILTERO		ADC0_CH6	
PDO	IVIPOVK	INDEX	PWWBKKI	MALL2	101	100	FILIERU		/ACMPVP0	_
PB7	UART1TX	T1I	Т10						ADC0_CH5	
PD/	UARITIA	111	110						/ OPAVP0	-
PB8	UART1RX	-	-	-	-	-	-	-	OPAVN0	-
DDO	MADUIDO	LIADT1DTC							ADC0_CH3	
PB9	MPURD	UART1RTS					-		/OPAOUT0	

PB10	SPI1SCLK	PWM0AN	тоі	Т0О	-	_	_	-	-	ISP
PB11	UARTOTX	PWMOBN	T1I	T10	ΧI	-	-	-	-	-
PB12	UARTORX	PWM0B	T2I	T2O	хо	-	-	-	-	-
PB13	SPI1MOSI	PWM0A		-	-		_	-	-	
PB14	UART0TX	SPI1MISO	CAN0TX	PWMBRK0	BT2O	FILTERO	_	-	ACMPVN3	-
PB15	UARTORX	SPI1SSEL	втзо	-	-	_	_	-	-	-

表格 5-3 PM 复用功能

管脚名称	SEL0001	SEL0010	SEL0011	SEL0100	SEL0101	SEL0110	SEL0111	SEL1000	SEL1111	其他
РМ0	SWCLK	UART1TX	PWMCLK0	T1I	T10	-	-	-	ADC0_CH11	-
PM1	SWDIO	UART1RX	втзо	-	-	-	-	-	-	-
PM2	PWM1BN	PWM1B	HALLO	-	-	-	-	-	-	-
PM3	I2C0SCL	UART0TX	CANORX	PWM1B	PWM0A	PWM1BN	HALL1	-	-	-
PM4	I2C0SDA	UARTORX	CAN0TX	PWM1AN	PWM1A	HALL2	-	-	-	-
PM5	PWM1A	PWM1BN	PWM1AN	-	-	-	-	-	OPAVN3	-
РМ6	PWM0AN	PWM0A	втоо	-	-	-	-	-	OPAVP3	-
PM7	SPIOSSEL	PWM0A	PWM1AN	PWM0AN	BT1O	-	-	-	-	-
PM8	SPIOSCLK	CANORX	PWM0BN	тоі	тоо	-	-	-	-	-
PM9	QEIUPDN	SPIOMOSI	PWM0B	T2I	Т2О	_	-	-	ADC0_CH10/ OPAOUT3	-
PM10	SPIOMISO	-	-	-	-	-	-	-	-	-
PM11	-	-	-	-	-	-	-	-	-	-
PM12	-	-	-	-	-	-	-	-	-	-
PM13	-	-	-	-	-	-	-	-	-	-
PM14	-	-	-	-	-	-	-	-	-	-
PM15	-	-	-	-	-	-	-	-	-	-

6 功能描述

6.1 存储器映射

SWM211 控制器为 32 位通用控制器,提供了 4G 字节寻址空间,如下表所示。数据格式仅支持小端格式(Little-Endian),各模块具体寄存器排布及操作说明在后章节有详细描述。

表格 6-1 存储器映射

起始	结束	描述		
存储器				
0x0000000	-	FLASH		
0x01000000		片内 flash 的 user 区		
0x20000000	-	SRAM		
AHB 总线外设	•			
0x4000000	0x400007FF	syscon		
0x40000800	0x40000FFF	DMA		
0x40001000	0x400017FF	INTCTRL		
0x40001800	0x40001FFF	MPUIF		
0x40003000	0x400037FF	CORDIC		
0x40003800	0x40003FFF	DIV		
0x40004000	0x400047FF	GPIOM		
0x40004800	0x40004FFF	GPIOA		
APB1 总线外设	•			
0x40040000	0x40040FFF	GPIOB		
0x40040800	0x400427FF	UARTO		
0x40042000	0x40042FFF	UART1		
0x40042800	0x400447FF	SPI0		
0x40044000	0x40044FFF	SPI1		
0x40044800	0x400467FF	PWM		
0x40046000	0x40046FFF	TIMER		
0x40046800	0x40048FFF	BTIMER		
0x40048800	0x400497FF	SARADC		
0x40049000	0x4004A7FF	FLASHC		
0x4004B800	0x4004DFFF	QEI		
0x4004D800	•			
0x400A0000	0x400A07FF	PORT		
0x400A0800	0x400A0FFF	WDT		
0x400A6000	0x400A67FF	12C0		
0x400A8000	0x400A87FF	CAN0		
0x400Aa000	0x400AA7FF	ANACON		
核内部控制器	<u> </u>			

0xE000E010	0xE000E01F	系统定时控制寄存器
0xE000E100	0xE000E4EF	NVIC 中断控制寄存器器
0xE000ED00	0xE000ED3F	系统控制寄存器

6.2 中断控制器(NVIC)

6.2.1 概述

Cortex-M0 提供了"嵌套向量中断控制器(NVIC)"用以管理中断事件。

中断优先级分为 4 级,可通过中断优先级配置寄存器(IRQn)进行配置。中断发生时,内核比较中断优先级,并自动获取入口地址,并保护环境,将指定寄存器中数据入栈,无需软件参与。中断服务程序结束后,由硬件完成出栈工作。同时支持"尾链(Tail-Chaining Interrupts)"模式及"迟至(Late Arrivals)"模式,有效的优化了中断发生及背对背中断的执行效率,提高了中断的实时性。

更多细节请参阅"Cortex-MO 技术参考手册"及"ARM® CoreSight 技术参考手册"。

6.2.2 特性

- 支持嵌套及向量中断
- 硬件完成现场的保存和恢复
- 动态改变优先级
- 确定的中断时间

6.2.3 功能描述

中断向量表

SWM211 提供了 32 个中断供外设与核交互, 其排列如表格 6-2 所示。可以通过中断配置模块, 将任意模块或具体 IO 的中断连接至指定中断编号。具体使用参考中断配置模块。

表格 6-2 中断编号及对应外设

中断(IRQ 编号)	描述
0	UARTO
1	TIMERO
2	CORDIC
3	UART1
4	PWM_CH1
5	TIMER1
6	HALL
7	PWM_CH0
8	BOD
9	PWM_HALT
10	-
11	WDT
12	12C0
13	XTAL_STOP_DET
14	SARADC0
15	СМР
16	BTIMERO
17	BTIMER1
18	BTIMER2
19	BTIMER3
20	GPIOA
21	GPIOB
22	GPIOM
23	GPIOA0/GPIOM0/SPI1
24	GPIOA1/GPIOM1/MPU
25	GPIOA2/GPIOM2
26	GPIOA3/GPIOM3
27	GPIOBO/GPIOA8/TIMER2
28	GPIOB1/GPIOA9/DMA
29	GPIOB2/GPIOA10/CAN0
30	GPIOB3/GPIOA11/SPI0
31	GPIOB4/GPIOB10/QEI
NMI	SYSTEM

6.2.4 寄存器映射

名称	偏移	类型	复位值	描述			
NVIC BASE 0xE000E100							
NVIC_ISER	0x00	R/W	0x00	中断使能寄存器			
NVIC_ICER	0x80	R/W	0x00	清除使能寄存器			
NVIC_ISPR	0x100	R/W	0x00	设置挂起寄存器			
NVIC_ICPR	0x180	R/W	0x00	清除挂起寄存器			
NVIC_IPR0	0x300	R/W	0x00	IRQ0—IRQ3 优先级控制			
NVIC_IPR1	0x304	R/W	0x00	IRQ4—IRQ7 优先级控制			
NVIC_IPR2	0x308	R/W	0x00	IRQ8—IRQ11 优先级控制			
NVIC_IPR3	0x30C	R/W	0x00	IRQ12—IRQ15 优先级控制			
NVIC_IPR4	0x310	R/W	0x00	IRQ16—IRQ19 优先级控制			
NVIC_IPR5	0x314	R/W	0x00	IRQ20—IRQ23 优先级控制			
NVIC_IPR6	0x318	R/W	0x00	IRQ24—IRQ27 优先级控制			
NVIC_IPR7	0x31C	R/W	0x00	IRQ28—IRQ31 优先级控制			

6.2.5 寄存器描述

中断使能寄存器 NVIC_ISER

寄存器	偏移	类型	复位值	描述
NVIC_ISER	0x00	R/W	0x00	中断使能寄存器

31	30	29	28	27	26	25	24			
	SETENA									
23	22	21	20	19	18	17	16			
	SETENA									
15	14	13	12	11	10	9	8			
	SETENA									
7	6	5	4	3	2	1	0			
	SETENA									

位域	名称	描述
21.0	SETENA	中断使能,向对应位写 1 使能相应中断号中断,写 0 无效。
31:0		读返回目前使能状态。

清除使能寄存器 NVIC_ICER

寄存器	偏移	类型	复位值	描述
NVIC_ICER	0x80	R/W	0x00	清除使能寄存器

31	30	29	28	27	26	25	24			
	CLRENA									
23	22	21	20	19	18	17	16			
	CLRENA									
15	14	13	12	11	10	9	8			
			CLR	ENA						
7	6	5	4	3	2	1	0			
	CLRENA									

位域	名称	描述
31:0	CLRENA	中断清除,向对应位写 1 清除相应中断号中断使能位,写 0 无效。
31:0		读返回目前使能状态

设置挂起寄存器 NVIC_ISPR

寄存器	偏移	类型	复位值	描述
NVIC_ISPR	0x100	R/W	0x00	设置挂起寄存器

31	30	29	28	27	26	25	24			
	SETPEND									
23	22	21	20	19	18	17	16			
	SETPEND									
15	14	13	12	11	10	9	8			
	SETPEND									
7	6	5	4	3	2	1	0			
	SETPEND									

位域	名称	描述
31:0	SETPEND	中断挂起,向对应位写 1 挂起相应中断号中断,写 0 无效。
31:0		读返回目前挂起状态。

清除挂起寄存器 NVIC_ICPR

寄存器	偏移	类型	复位值	描述
NVIC_ICPR	0x180	R/W	0x00	清除挂起寄存器

31	30	29	28	27	26	25	24			
	CLRPEND									
23	22	21	20	19	18	17	16			
	CLRPEND									
15	14	13	12	11	10	9	8			
	CLRPEND									
7	6	5	4	3	2	1	0			
	CLRPEND									

位域	名称	描述
21.0	CLRPEND	中断挂起清除,向对应位写 1 清除相应中断号中断挂起标志,写 0 无效。
31:0		读返回目前挂起状态。

IRQ0—IRQ3 优先级控制 NVIC_IPR0

寄存器	偏移	类型	复位值	描述
NVIC_IPR0	0x300	R/W	0x00	IRQ0—IRQ3 优先级控制

31	30	29	28	27	26	25	24
PR	PRI_3				-		
23	22	21	20	19	18	17	16
PR	I_2				-		
15	14	13	12	11	10	9	8
PRI_1					-		
7	6	5	4	3	2	1	0
PR	1_0				-		

位域	名称	描述
31:30	PRI_3	IRQ3 优先级,0 为最高,3 为最低
29:24	_	-
23:22	PRI_2	IRQ2 优先级,0 为最高,3 为最低
21:16	-	-
15:14	PRI_1	IRQ1 优先级,0 为最高,3 为最低
13:8		-
7:6	PRI_O	IRQ0 优先级,0 为最高,3 为最低
5:0	-	-

IRQ4—IRQ7 优先级控制 NVIC_IPR1

寄存器	偏移	类型	复位值	描述
NVIC_IPR1	0x304	R/W	0x00	IRQ4—IRQ7 优先级控制

31	30	29	28	27	26	25	24
PR	PRI_7				-		
23	22	21	20	19	18	17	16
PR	I_6				-		
15	14	13	12	11	10	9	8
PR	1_5				-		
7	6	5	4	3	2	1	0
PR	1_4				-		

位域	名称	描述
31:30	PRI_7	IRQ7 优先级,0 为最高,3 为最低
29:24	-	-
23:22	PRI_6	IRQ6 优先级,0 为最高,3 为最低
21:16	-	-
15:14	PRI_5	IRQ5 优先级, 0 为最高, 3 为最低
13:8	-	-
7:6	PRI_4	IRQ4 优先级,0 为最高,3 为最低
5:0	-	-

IRQ8—IRQ11 优先级控制 NVIC_IPR2

寄存器	偏移	类型	复位值	描述
NVIC_IPR2	0x308	R/W	0x00	IRQ8—IRQ11 优先级控制

31	30	29	28	27	26	25	24
PRI_11				-	-		
23	22	21	20	19	18	17	16
PRI	_10				-		
15	14	13	12	11	10	9	8
PRI_9					-		
7	6	5	4	3	2	1	0
PR	I_8			-	-		

位域	名称	描述
31:30	PRI_11	IRQ11 优先级,0 为最高,3 为最低
29:24	-	-
23:22	PRI_10	IRQ10 优先级,0 为最高,3 为最低
21:16	-	-
15:14	PRI_9	IRQ9 优先级,0 为最高,3 为最低
13:8	-	-
7:6	PRI_8	IRQ8 优先级,0 为最高,3 为最低
5:0	-	-

IRQ12—IRQ15 优先级控制 NVIC_IPR3

寄存器	偏移	类型	复位值	描述
NVIC_IPR3	0x30C	R/W	0x00	IRQ12—IRQ15 优先级控制

31	30	29	28	27	26	25	24
PRI	PRI_15			-	-		
23	22	21	20	19	18	17	16
PRI	_14				-		
15	14	13	12	11	10	9	8
PRI	_13				-		
7	6	5	4	3	2	1	0
PRI	_12			-	-		

位域	名称	描述
31:30	PRI_15	IRQ15 优先级,0 为最高,3 为最低
29:24	-	-
23:22	PRI_14	IRQ14 优先级,0 为最高,3 为最低
21:16	-	-
15:14	PRI_13	IRQ13 优先级,0 为最高,3 为最低
13:8	-	-
7:6	PRI_12	IRQ12 优先级,0 为最高,3 为最低
5:0	-	-

IRQ16—IRQ19 优先级控制 NVIC_IPR4

寄存器	偏移	类型	复位值	描述
NVIC_IPR4	0x310	R/W	0x00	IRQ16—IRQ19 优先级控制

31	30	29	28	27	26	25	24
PRI	PRI_19			-	-		
23	22	21	20	19	18	17	16
PRI	_18				-		
15	14	13	12	11	10	9	8
PRI	PRI_17				-		
7	6	5	4	3	2	1	0
PRI	_16			-	-		

位域	名称	描述
31:30	PRI_19	IRQ19 优先级, 0 为最高, 3 为最低
29:24	-	-
23:22	PRI_18	IRQ18 优先级,0 为最高,3 为最低
21:16	-	-
15:14	PRI_17	IRQ17 优先级, 0 为最高, 3 为最低
13:8	-	-
7:6	PRI_16	IRQ16 优先级, 0 为最高, 3 为最低
5:0	-	-

IRQ20—IRQ23 优先级控制 NVIC_IPR5

寄存器	偏移	类型	复位值	描述
NVIC_IPR5	0x314	R/W	0x00	IRQ20—IRQ23 优先级控制

31	30	29	28	27	26	25	24
PRI	PRI_23			-	-		
23	22	21	20	19	18	17	16
PRI	PRI_22				-		
15	14	13	12	11	10	9	8
PRI	_21				-		
7	6	5	4	3	2	1	0
PRI	_20			-	-		

位域	名称	描述
31:30	PRI_23	IRQ23 优先级,0 为最高,3 为最低
29:24	-	-
23:22	PRI_22	IRQ22 优先级,0 为最高,3 为最低
21:16	-	-
15:14	PRI_21	IRQ21 优先级,0 为最高,3 为最低
13:8	-	-
7:6	PRI_20	IRQ20 优先级,0 为最高,3 为最低
5:0	-	-

IRQ24—IRQ27 优先级控制 NVIC_IPR6

寄存器	偏移	类型	复位值	描述
NVIC_IPR6	0x318	R/W	0x00	IRQ24—IRQ27 优先级控制

31	30	29	28	27	26	25	24
PRI	PRI_27				-		
23	22	21	20	19	18	17	16
PRI	PRI_26				-		
15	14	13	12	11	10	9	8
PRI	_25				-		
7	6	5	4	3	2	1	0
PRI	PRI_24				-		·

位域	名称	描述
31:30	PRI_27	IRQ27 优先级,0 为最高,3 为最低
29:24	-	-
23:22	PRI_26	IRQ26 优先级,0 为最高,3 为最低
21:16	-	-
15:14	PRI_25	IRQ25 优先级,0 为最高,3 为最低
13:8	-	-
7:6	PRI_24	IRQ24 优先级,0 为最高,3 为最低
5:0		-

IRQ28—IRQ31 优先级控制 NVIC_IPR6

寄存器	偏移	类型	复位值	描述
NVIC_IPR7	0x31C	R/W	0x00	IRQ28—IRQ31 优先级控制

31	30	29	28	27	26	25	24
PRI	PRI_31				-		
23	22	21	20	19	18	17	16
PRI	PRI_30				-		
15	14	13	12	11	10	9	8
PRI	_29				-		
7	6	5	4	3	2	1	0
PRI	PRI_28				-		

位域	名称	描述
31:30	PRI_31	IRQ31 优先级,0 为最高,3 为最低
29:24	-	-
23:22	PRI_30	IRQ30 优先级,0 为最高,3 为最低
21:16	-	-
15:14	PRI_29	IRQ29 优先级,0 为最高,3 为最低
13:8	-	-
7:6	PRI_28	IRQ28 优先级,0 为最高,3 为最低
5:0	-	-

6.3 系统定时器(SYSTIC)

6.3.1 概述

Cortex-M0 核内部提供了一个 24 位系统定时器。该定时器使能后装载当前值寄存器(VAL)内数值并向下递减至 0,并在下个时钟沿重新加载重载寄存器(LOAD)内数值。计数器再次递减至 0时,计数器状态寄存器(CTRL)中标识位 COUNTERFLAG 置位,读该位可清零。

复位后, VAL 寄存器与 LOAD 寄存器值均未知,因此使用前需初始化,向 VAL 写入任意值,清零同时复位状态寄存器,保证装载值为 LOAD 寄存器中数值。

当 LOAD 寄存器值为 0 时, 重新装载后计时器保持为 0, 并停止重新装载。

细节请参阅"Cortex-MO 技术参考手册"及"ARM® CoreSight 技术参考手册"。

6.3.2 特性

- 24 位系统定时器
- 递减
- 写清零

6.3.3 模块结构框图

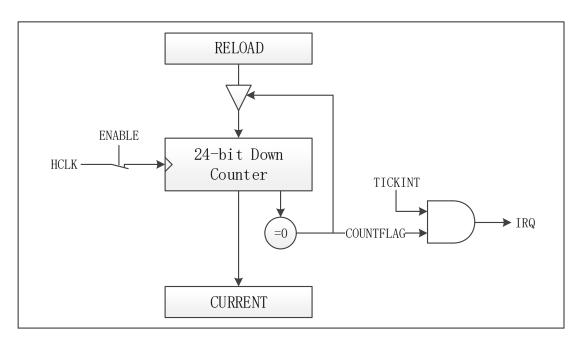


图 6-1 systic 模块结构图

6.3.4 功能描述

该定时器使能后装载当前值寄存器(VAL)内数值并向下递减至 0,并在下个时钟重新加载重载寄存器(LOAD)内数值。计数器再次递减至 0 时,计数器状态寄存器(CTRL)中的标志位COUNTERFLAG 置位,读该位可清零。

复位后, VAL 寄存器与 LOAD 寄存器值均未知,因此使用前需初始化,向 VAL 写入任意值,清零同时复位状态寄存器,保证装载值为 LOAD 寄存器中数值。

当 LOAD 寄存器值为 0 时, 重新装载后计时器保持为 0, 并停止重新装载。

该计数器可用作实时系统的滴答定时器或一个简单的计数器。

SysTick 计数时序图如图 6-2 所示。

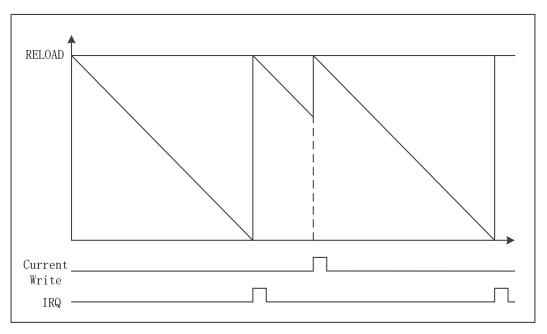


图 6-2 SysTick 计数时序图

6.3.5 寄存器映射

名称	偏移	类型	复位值	描述
SYSTIC E	BASE: 0xE000	010		
CTRL	0x0	R/W	0x04	状态寄存器
LOAD	0x4	R/W	_	重载寄存器
VAL	0x8	R/W	_	当前值寄存器

6.3.6 寄存器描述

状态寄存器 CTRL

寄存器	偏移	类型	复位值	描述
CTRL	0x0	R/W	0x04	状态寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
			-				COUNTERFLAG
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
		-			CLKSOURCE	TINKINT	ENABLE

位域	名称	描述				
31:17	-	-				
16	COUNTERFLAG	计数器递减到 0 且该过程中本寄存器未被读取,本位返回 1,RO				
15:3	-					
		SysTick 定时器时钟源:				
2	CLKSOURCE	0: 参考时钟				
		1: 系统时钟				
1	TINKINT	1: 中断触发使能				
		0: 中断触发禁能				
		1: 定时器使能				
[ENABLE	0: 定时器禁能				

重载寄存器 LOAD

寄存器	偏移	类型	复位值	描述
LOAD	0x4	R/W	_	重载寄存器

31	30	29	28	27	26	25	24	
				-				
23	22	21	20	19	18	17	16	
	RELOAD							
15	14	13	12	11	10	9	8	
	RELOAD							
7	6	5	4	3	2	1	0	
	RELOAD							

位域	名称	描述
31:24	-	-
23:0	RELOAD	计数器达到 0 时加载本寄存器值,写 0 终止继续加载

当前值寄存器 VAL

寄存器	偏移	类型	复位值	描述
VAL	0x8	R/W		当前值寄存器

31	30	29	28	27	26	25	24	
				-				
23	22	21	20	19	18	17	16	
	CURRENT							
15	14	13	12	11	10	9	8	
	CURRENT							
7	6	5	4	3	2	1	0	
	CURRENT							

位域	名称	描述
31:24	-	_
23:0	CURRENT	读操作返回当前计数器值,写操作清 0 该寄存器,同时清除 COUNTERFLAG 位

6.4 系统控制器

6.4.1 概述

Crotex-M0 系统控制器主要负责内核管理,包括 CPUID,内核核资源中断优先级设置及内核电源管理。

更多细节请参阅"Cortex-MO 技术参考手册"及"ARM®CoreSight 技术参考手册"。

6.4.2 特性

- CPUID
- 内核电源管理
- 内核核资源中断优先级设置

6.4.3 功能描述

系统控制器主要负责内核管理,包括 CPUID,内核核资源中断优先级设置及内核电源管理,具体操作详见寄存器描述。

6.4.4 寄存器映射

名称	偏移	类型	复位值	描述	
SYSCTRL BASE: 0xE000ED00					
CPUID	0x00	RO	0x410CC200	CPUID 寄存器	
ICSR	0x04	R/W	0x0000000	中断控制状态寄存器	
AIRCR	0x0C	R/W	0xFA050000	中断与复位控制寄存器	
SCR	0x10	R/W	0x0000000	系统控制寄存器	
SHPR2	0x1C	R/W	0x00000000	系统优先级控制寄存器 2	
SHPR3	0x20	R/W	0x00000000	系统优先级控制寄存器 3	

6.4.5 寄存器描述

CPUID 寄存器 CPUID

寄存器	偏移	类型	复位值	描述
CPUID	0x00	RO	0x410CC200	CPUID 寄存器

31	30	29	28	27	26	25	24			
	IMPLEMENTER									
23	22	21	20	19	18	17	16			
				PART						
15	14	13	12	11	10	9	8			
			PAR	TNO						
7	6	5	4	3	2	1	0			
	PARTNO				REVI	SION				

位域	名称	描述
31:24	IMPLEMENTER	ARM 分配执行码
23:20	-	-
19:16	PART	ARMV6-M
15:4	PARTNO	读返回 0xC20
3:0	REVISION	读返回 0x00

中断控制状态寄存器 ICSR

寄存器	4馬 本	类型	复位值	描述
ICSR	0x04	R/W	0x00000000	中断控制状态寄存器

31	30	29	28	27	26	25	24
NMIPENDSET	-		PENDSVSET	PENDSVCLR	PENDSTSET	PENDSTCLR	-
23	22	21	20	19	18	17	16
-	ISRPENDING			-		VECTPENDING	
15	14	13	12	11	10	9	8
	VECTPENDING				-	-	
7	6	5	4	3	2	1	0
	-	VECTACTIVE					

位域	名称	描述
		挂起 NMI 中断位
		写:
		0: 没有效果
		1:将 NMI 异常状态更改为挂起。
31	NMIPENDSET	读:
31	INIVIIF LINDSL'I	0 = NMI 异常未挂起
		1 = NMI 异常待定。
		因为 NMI 是优先级最高的异常,所以通常处理器一检测到该位写入 1 就进入 NMI
		异常处理程序。 输入处理程序然后将此位清除为 0.这意味着只有在处理器执行该
		处理程序时重新置位 NMI 信号时,NMI 异常处理程序才会读取此位。
30:29	-	-
		挂起 PendSV 中断,1 有效
		写:
		0: 没有效果
28	PENDSVSET	1:将 PendSV 异常状态更改为挂起。
26	FLINDSVSLI	读:
		0:PendSV 异常未挂起
		1: PendSV 异常处于待处理状态。
		将 1 写入此位是将 PendSV 异常状态设置为挂起的唯一方法。
		写 1 清 PendSV 中断,仅写有效,WO
27	PENDSVCLR	0: 没有效果
		1:从 PendSV 异常中删除暂挂状态。

SWM211 系列

		挂起 SysTick 异常中断				
		写:				
		0. 没有效果				
26	PENDSTSET	1:将 SysTick 异常状态更改为挂起。				
20	PENDSISEI	读:				
		0:SysTick 异常未挂起				
		1: SysTick 异常处于待处理状态。				
		如果您的设备未实现 SysTick 定时器,则该位保留。				
25	PENDSTCLR	写 1 清 SysTick 中断,仅写有效,WO				
24:23	-	-				
22	ISRPENDING	外部配置中断是否挂起,RO				
21:18	-	-				
		优先级最高的挂起异常向量号,RO				
17:12	VECTPENDING	0: 没有待处理的异常				
		其他:向量号				
11:6	-	-				
		0: 线程模式				
5:0	VECTACTIVE	其它: 当前执行异常处理向量号				
		RO				

中断与复位控制寄存器 AIRCR

寄存器	偏移	类型	复位值	描述
AIRCR	0x0C	wo	0xFA050000	中断与复位控制寄存器

31	30	29	28	27	26	25	24		
VECTORKEY									
23	22	21	20	19	18	17	16		
			VECTO	ORKEY					
15	14	13	12	11	10	9	8		
ENDIANESS				-					
7	6	5	4	3	2	1	0		
		-			SYSRESETREQ	VECTCLRACTIV E	-		

位域	名称	描述
		注册码:
31:16	VECTORKEY	读为未知
		在写入时,将 0x05FA 写入 VECTKEY,否则将忽略写入。
		数据字节模式
15	ENDIANESS	0: 小端
		1: 大端
14:3	-	-
2	SYSRESETREQ	写 1 时复位芯片,复位时自动清除
1	VECTCLRACTIVE	置1时清除所有异常活动状态
0	-	-

系统控制寄存器 SCR

寄存器	偏移	类型	复位值	描述
SCR	0x10	R/W	0x00000000	系统控制寄存器

31	30	29	28	27	26	25	24
			-	-			
23	22	21	20	19	18	17	16
			-	-			
15	14	13	12	11	10	9	8
			-	-			
7	6	5	4	3	2	1	0
-			SWVONPEND		-	SLEEPONEXIT	-

位域	名称	描述
31:5	-	-
4	SWVONPEND	使能后,可将中断挂起过程作为唤醒事件
2:3	-	-
1	SLEEPONEXIT	置1后,内核从异常状态返回后进入睡眠模式
0	-	-

系统优先级控制寄存器 2 SHPR2

寄存器	偏移	类型	复位值	描述
SHPR2	0x1C	R/W	0x00000000	系统优先级控制寄存器 2

31	30	29	28	27	26	25	24
PRI	PRI_11				-		
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
				-			

位域	名称	描述			
31:30 PRI_11		系统处理器优先级 11: SVCall 0 为最高, 3 为最低			
29:0	_				

系统优先级控制寄存器 3 SHPR3

寄存器	偏移	类型	复位值	描述
SHPR3	0x20	R/W	0x0000000	系统优先级控制寄存器 3

31	30	29	28	27	26	25	24
PRI	PRI_15			-	-		
23	22	21	20	19	18	17	16
PRI	PRI_14				-		
15	14	13	12	11	10	9	8
	-						
7	6	5	4	3	2	1	0
				-			

位域	名称	描述			
21.20		系统处理器优先级 15: SysTick			
31:30	PRI_15	0 为最高, 3 为最低			
29:24	-	-			
23:22		系统处理器优先级 14: PendSV			
23:22	PRI_14	0 为最高, 3 为最低			
21:0	-	-			

6.5 系统管理(SYSCON)

6.5.1 概述

系统管理为整个芯片提供时钟源,包括系统时钟切换、外设时钟门控、工作模式选择以及版本控制等功能。还可通过单独时钟的开或关,时钟源选择来进行功耗控制。

6.5.2 特性

- 时钟控制
- 工作模式选择
- 休眠使能
- 端口唤醒设置
- BOD 掉电检测控制
- 复位控制及状态
- UID

6.5.3 模块结构框图

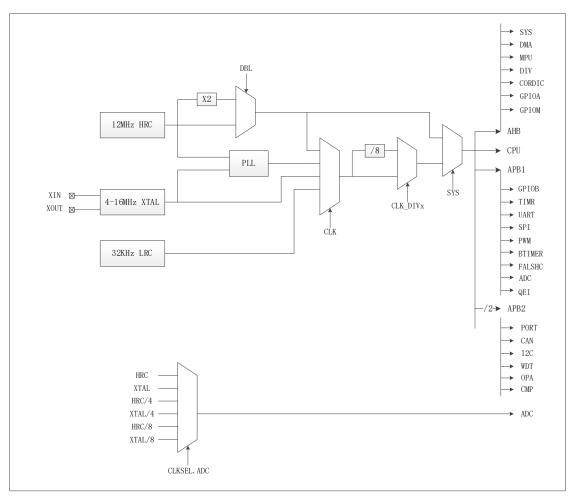


图 6-3 时钟结构框图

6.5.4 功能描述

时钟控制

SWM211 有 4 个时钟源可供使用:

- 内部高频振荡器(RCHF): 内部高频振荡器为片内时钟源,无需连接任何外部器件。频率为 12MHz,通过 HRCCR 寄存器进行切换,可提供较精确的固定频率时钟.
- 内部低频振荡器(RCLF): 内部低频振荡器为片内时钟源, 无需连接任何外部器件。频率为 32KHz。
- 外部振荡器 (XTAH): 外部振荡器可接 4~16MHz 频率.
- PLL

对于主时钟选择,通过 CLKSEL 寄存器 SYSCLK 位,选择内部高频时钟或其他时钟。

CLKSEL 寄存器 SYSCLK 位,选择内部高频时钟(RCHF),时钟源为 12MHz,此时 CLKSEL 寄存器 SRCDIV 位无效。

CLKSEL 寄存器 SYSCLK 位,选择 SRCCLK, 通过 SRCCLK 位可选择时钟源为片内高频 RC 振荡器、片外高频晶体振荡器、片内低频 RC 振荡器, 此时 CLKSEL 寄存器 SRCDIV 位有效:

- CLKSEL 寄存器 BIT[1] = 0 时,选择内部 RCHF 时钟不分频
- CLKSEL 寄存器 BIT[1] = 1 时,选择内部 RCHF 时钟 8 分频

当 CLKSEL 寄存器 SRCCLK 选择片外时钟。选择片外时钟前,需将相应引脚输入使能通过 INEN_x 寄存器打开,并通过寄存器 PORTx_FUNC 将相应引脚换至外接晶振功能,且将 XTALCR 寄存器中外接晶振使能位使能。完成上述操作后,需根据外部晶振起振时间,使用软件产生一定时间,确保晶振稳定震荡,最后将 CLKSEL 寄存器中相应位设置为片外震荡器。

注意:执行时钟切换时,需要保证目标时钟使能及通路打开,且 需要先切换至 32KHZ 时钟对于 ADC 时钟,通过 CLKSEL 寄存器 ADC SRC、ADCDIV、ADCCLK0、ADCCLK1 配置:

通过 ADCCLKO 选择 ADCCLKO 时钟, ADCCLKO 选择片内高频 RC 振荡器(RCHF)、片外高频晶体振荡器。可通过 ADCDIV 和 ADC_SRC 选择 SARADC 时钟源分频,可选不分频、4 分频、8 分频。

内部 RCHF 及 RCLF 可通过 HRCCR 寄存器 ON 位与 LRCCR 寄存器 EN 位进行关闭操作,关闭前需确认时钟已切换,并未使用即将执行关闭操作的时钟。

外设时钟控制功能可控制外设时钟打开及关闭,如:

- GPIO
- SARADC
- DIV
- 12C

- PWM
- TIMER
- WDT
- UART

上电后,以上模块均处于时钟关闭状态,需要通过设置 CLKEN 寄存器进行时钟使能,否则访问对应模块寄存器操作无效。

休眠与唤醒设置

SWM211 系列提供浅睡眠(SLEEP)模式,通过 SLEEP 寄存器进行使能操作。

浅睡眠模式

浅睡眠模式下,芯片进入保持状态,所有时钟关闭,在功耗较低的前提下保持数据。可以通过配置任意 I/O 引脚进行唤醒操作。IO 唤醒操作同样为下降沿唤醒。唤醒后,程序从睡眠使能语句继续执行。

在 sleep 之前,需要将时钟切换为内部高频。

注意: 浅睡眠模式使能前需保证 RCLF(32KHZ) 时钟为使能状态,且将所有不需要唤醒操作的 IO 输入使能关闭(PORTCON 模块中 INEN x 寄存器)。

端口唤醒

浅睡眠模式下,可指定任意 IO 进行唤醒操作。

示意图如图 6-4 所示。

具体流程如下:

- 确认 RCLF(32KHZ 时钟)为使能状态
- 将需要执行唤醒操作的引脚对应 PxWKEN 寄存器及 INEN_x 寄存器指定位配置为 1, 使能相应端口对应位输入使能及唤醒功能
- SLEEP 寄存器 BIT[0] = 1 后,芯片进入浅睡眠模式
- 唤醒端口可配置为 GPIO 端口,以及 UART 模块 RX 端口或 I2C 模块 DAT 端口,当 配置端口对应位产生下降沿时,芯片被唤醒,继续执行程序。使用通讯接口进行 唤醒时,需保证通讯采样速率低于 32KHZ,避免出现数据丢失现象
- 唤醒后,端口对应 PxWKSR 寄存器对应位被置 1,可通过对该位写 1 进行清除(该位对进入休眠无影响)

注: 所有配置为唤醒功能的引脚, 执行唤醒过程时只能有一个产生下降沿, 对应引脚必须保证为高电平。为保证功耗最低, 需确认所有输入使能引脚无悬空输入状态

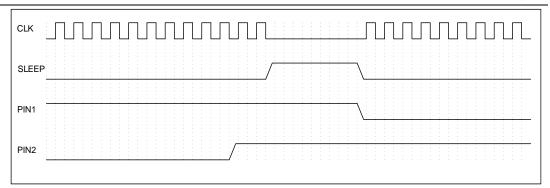


图 6-4 端口唤醒示意图

BOD 掉电检测

芯片提供了低电压中断及复位功能,通过 BODCR 寄存器进行配置。

通过配置寄存器 BODCR,可选择相应复位电压产生复位,使整个芯片处于复位状态。该功能为常开功能。

通过配置寄存器 BODCR, 可选择相应中断电压产生中断, 当产生 BOD 中断信号, 通过查询 BODSR 寄存器 IF 位可以获取状态。

IF 位为中断状态位,当芯片供电电压变为配置电压时,该位将被置 1(电平触发)。此时若 IE 位为非屏蔽状态(IE = 1),则 NVIC 控制器将接收到 BOD 中断。

该中断可通过向 IF 位写 1 清除。清除后,即使电压达到配置电压,IF 位也不会发生变化,也不会再次产生中断,直至供电电压再次出现从配置电压以上至配置电压以下。

随机数发生器

芯片提供了一个随机数发生器,可以供 64 位随机数供使用,可通过配置 PRNGCR 寄存器、PRNGDL 寄存器、PRNGDH 寄存器使用。

使用流程如下:

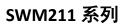
- 配置 PRNGCR 寄存器 CLK 位,配置时钟工作模式
- 配置 PRNGCR 寄存器 CLKEN 位、使随机数发生器正常工作
- 查询 PRNGCR 寄存器 RDY 位为 1 时,表明随机数准备完成,可将 PRNGL 和 PRNGH 两个寄存器一并读出
- PRNGL 和 PRNGH 组成 64 位随机数

用户ID

芯片可以提供 96 位唯一 ID。

6.5.5 寄存器映射

名称	偏移	类型	复位值	描述		
SYSCON E	SYSCON BASE: 0x40000000					
CLKSEL	0x00	R/W	0x01	时钟选择控制寄存器		
CLKDIVX_ON	0x04	R/W	0x00	源时钟控制寄存器		
CLKEN0	0x08	R/W	0x00	时钟门控控制寄存器 0		
CLKEN1	0x0C	R/W	0x00	时钟门控控制寄存器 1		
SLEEP	0x10	R/W	0x00	系统模式控制寄存器		
RSTSR	0x024	R/W1C	0x00	芯片复位状态寄存器		
CHIP_ID0	0x80	RO	_	芯片 96 位 ID 寄存器 0		
CHIP_ID1	0x84	RO	_	芯片 96 位 ID 寄存器 1		
CHIP_ID2	0x88	RO	_	芯片 96 位 ID 寄存器 2		
PRNGCR	0x0d0	R/W	0x00	随机数控制寄存器		
PRNGDL	0x0d4	RO	0x00	随机数输出寄存器低 32 位数据		
PRNGDH	0x0d8	RO	0x00	随机数输出寄存器高 32 位数据		
PAWKEN	0x100	R/W	0x00	PORTA 唤醒使能控制寄存器		
PBWKEN	0x104	R/W	0x00	PORTB 唤醒使能控制寄存器		
PMWKEN	0x120	R/W	0x00	PORTM 唤醒使能控制寄存器		
PAWKSR	0x130	R/W1C	0x00	PORTA 唤醒状态寄存器		
PBWKSR	0x134	R/W1C	0x00	PORTB 唤醒状态寄存器		
PMWKSR	0x150	R/W1C	0x00	PORTM 唤醒状态寄存器		
IOFILTO	0x400	R/W	0x00	IO 滤波窗口时间配置寄存器 0		
IOFILT1	0x404	R/W	0x00	IO 滤波窗口时间配置寄存器 1		
PRSTEN	0x720	R/W	0x0000_0000	芯片复位屏蔽寄存器		
PRSTRO	0x724	R/W	0x0000_0000	芯片复位配置寄存器 0		
PRSTR1	0x728	R/W	0x0000_0000	芯片复位配置寄存器 1		
ANACON E	BASE: 0400AA	.000				
HRCCR	0x00	R/W	0x1	内部高频 RC 振荡器配置寄存器		
BODCR	0x10	R/W	0x00	BOD 控制寄存器		
BODSR	0x14	R/W1C	0x00	BOD 中断状态寄存器		
XTALCR	0x20	R/W	0x00	晶体振荡器控制寄存器		
XTALSR	0x24	R/W1C	0x00	晶体振荡器状态寄存器		
PLLCR	0x40	R/W	0	PLL 控制寄存器		
PLLDIV	0x44	R/W	0	PLL 分频寄存器		
PLLST	0x4C	R/W	0	PLL 状态寄存器		
LRCCR	0x50	R/W	0x0000_0001	芯片内部低频 RC 配置寄存器		
DACCR	0x90	R/W	0	DAC 控制寄存器		


6.5.6 寄存器描述

时钟选择控制寄存器 CLKSEL

寄存器	偏移	类型	复位值	描述
CLKSEL	0x00	R/W	0x01	时钟选择控制寄存器

31	30	29	28	27	26	25	24
			-				WKUP
23	22	21	20	19	18	17	16
		-		ADC_SRC	ADCDIV	ADCCLK0	ADCCLK0
15	14	13	12	11	10	9	8
	-		DT			-	
7	6	5	4	3	2	1	0
IOI	IOFILT -			SRCCLK		CLKDIVX	SYSCLK

位域	名称	描述
31:25	-	-
		SLEEP 唤醒时钟选择
24	WKUP	1: 保留
		0: 内部低频 RC 振荡器(32KHz)
23:20	-	-
		SARADC 采样时钟输出选择,对所有 SARADC 均有效
		1:选择 ADCDIV 作为 ADC 时钟输入
19	ADC_SRC	0:选择 ADCCLKx 作为 ADC 时钟输入
		注:SARADC 采样时钟在进行不同源选择时,必须先将 SARADC 时钟使能关闭,再
		进行时钟源切换。
		SARADC 时钟源分频选择,对所有 SARADC 均有效
18	ADCDIV	1: 时钟源的 8 分频
		0: 时钟源的 4 分频
		SARADC 时钟源选择 1
17	ADCCLK1	1: PLL 时钟
		0: ADCCLK0
		SARADC 时钟源选择 0,对所有 SARADC 均有效
16	ADCCLK0	1: 片外高频晶体振荡器(4~16MHz)
		0:片内高频 RC 振荡器(12MHz)
15:14	-	-

		WDT 计数时钟选择						
		11: 保留						
		10:片内低频 RC 振荡器(32KHz)						
13:12	WDT	01:片外高频晶体振荡器(4~16MHz)						
		00:片内高频 RC 振荡器(12MHz)						
		注:WDT 计数时钟在进行不同源选择时,必须先将 WDT 使能关闭,再进行时钟源						
		切换。						
11:8	-	-						
		滤波时钟选择						
		0x:片内高频 RC 振荡器(12MHz)						
7:6	IOFILT	10:片外高频晶体振荡器(4~16MHz)						
		11:片内低频 RC 振荡器(32KHz)						
5	-	-						
		SRCCLK 时钟选择						
		1xx:片内高频 RC 振荡器(RCHF:12MHz)						
	000014	011:片外高频晶体振荡器(XTAH:4~16MHz)						
4:2	SRCCLK	010: 保留						
		001: 片内 PLL						
		000:片内低频 RC 振荡器(RCLF:32KHz)						
		SRCCLK 分频选择						
1	CLKDIVx	1: SRC_CLK/8 分频						
		0: SRC_CLK						
		系统时钟选择						
		1: RCHF (12MHz)						
0	SYSCLK	0: SRCCLK						
		注:更改 SRCCLK 或 DIV 设置时,需要将此位先切换为 1,再进行时钟源或分频切						
		换						

源时钟选择控制寄存器 CLKDIVX_ON

寄存器	偏移	类型	复位值	描述
CLKDIVX_ON	0x04	R/W	0x00	源时钟控制寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
			-				CLKDIV_ON

位域	名称	描述
31:1	-	-
		DIVCLK 时钟门控
		1: 关闭
		0: 打开
		注:更改 DIV 时,需保证此位为 1,在关闭状态下进行更改
О	CLKDIV_ON	注 2:系统时钟选择不同时钟切换时,若需要在 SRCDIVCLK 或 SRCCLK 内部时钟源
		间进行切换,则系统时钟需要先切换回 RCHF,然后将该位置为 1 后再进行切换。
		注 3:若系统时钟已选择了 RCHF 作为时钟源,并需要改变 RCHF 频率时,系统时
		钟需要先切至其他时钟源,然后再改变 RCHF 频率,最后再将系统时钟切换回
		RCHF。

时钟门控控制寄存器 0 CLKEN0

寄存器	偏移	类型	复位值	描述
CLKEN0	0x08	R/W	0x00	时钟门控控制寄存器 0

31	30	29	28	27	26	25	24
-	MPU	-	CAN	-	SDADC0	ANAC	-
23	22	21	20	19	18	17	16
	-	DIV	CORDIC	-			
15	14	13	12	11	10	9	8
12C0	SPI1	SPI0	PWM	TIMER WDT -			-
7	6	5	4	3	2	1	0
UART1	UART0	-	GPIOM	- GP		GPIOB	GPIOA

	名称	描述
31	-	-
30	MPU	MPU 模块使能
29	-	-
28	CAN	CAN 时钟使能
27	-	-
26	SARADC0	SARADC_CTRL0 时钟使能
25	ANAC	ANACON 时钟使能
24:22	-	-
21	DIV	DIVIDER 时钟使能
20	CORDIC	CORDIC 时钟使能
19:16	-	-
15	I2C0	I2C0 时钟使能
14	SPI1	SPI1 时钟使能
13	SPI0	SPIO 时钟使能
12	PWM	PWM 时钟使能
11	TIMER	TIMER 时钟使能
10	WDT	WDT 时钟使能
9:8	-	-
7	UART1	UART1 时钟使能
6	UARTO	UARTO 时钟使能
5	-	-
4	GPIOM	GPIOM 时钟使能
3:2	-	-
1	GPIOB	GPIOB 时钟使能
0	GPIOA	GPIOA 时钟使能

时钟门控控制寄存器 1 CLKEN1

寄存器	偏移	类型	复位值	描述
CLKEN1	0x0C	R/W	0x00	时钟门控控制寄存器 1

31	30	29	28	27	26	25	24
		-			QEI		-
23	22	21	20	19	18	17	16
-	BTIMR	-	IOFILT		-	-	
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
				-			

位域	名称	描述
31:27	-	-
26	QEI	QEI 时钟使能
23:25	-	-
22	BTIMR	BTIMR 时钟使能
21	-	-
20	IOFILT	IOFILT 时钟使能
19	-	-
18:0	-	-

系统模式控制寄存器 SLEEP

寄存器	N扁 164.	类型	复位值	描述
SLEEP	0x10	R/W	0x00	系统模式控制寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
			-				SLEEP

位域	名称	描述
31:1	-	-
0	SLEEP	将该位置 1 后,系统将进入 SLEEP 模式

芯片复位状态寄存器 RSTSR

寄存器	偏移	类型	复位值	描述
RSTSR	0x024	R/W1C	0x00	芯片复位状态寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
-			IAA		-	WDT	POR

位域	名称	描述
31:5	-	-
		非法地址访问复位状态标志寄存器
4	IAA	1: 表示出现非法地址访问复位
		写1清零
3:2	_	-
		WDT 复位状态标志寄存器,写 1 清零
1	WDT	1: 出现 WDT 复位
		0: 未出现 WDT 复位
		POR 复位状态标志寄存器,写 1 清零
0	POR	1: 出现 POR 复位
		0: 未出现 POR 复位

芯片 96 位 ID 寄存器 0 CHIP_ID0

寄存器	偏移	类型	复位值	描述
CHIP_ID0	0x80	RO	_	芯片 96 位 ID 寄存器 0

31	30	29	28	27	26	25	24			
	ID0									
23	22	21	20	19	18	17	16			
	ID0									
15	14	13	12	11	10	9	8			
	ID0									
7	6	5	4	3	2	1	0			
	ID0									

位域	名称	描述
31:0	ID0	芯片 96 位 ID 寄存器 0

芯片 96 位 ID 寄存器 1 CHIP_ID1

寄存器	偏移	类型	复位值	描述
CHIP_ID1	0x84	RO	_	芯片 96 位 ID 寄存器 1

31	30	29	28	27	26	25	24			
	ID1									
23	22	21	20	19	18	17	16			
	ID1									
15	14	13	12	11	10	9	8			
	ID1									
7	6	5	4	3	2	1	0			
	ID1									

仚	域	名称	描述
31	1:0	ID1	芯片 96 位 ID 寄存器 1

芯片 96 位 ID 寄存器 2 CHIP_ID2

寄存器	偏移	类型	复位值	描述
CHIP_ID2	0x88	RO	_	芯片 96 位 ID 寄存器 2

31	30	29	28	27	26	25	24			
	ID2									
23	22	21	20	19	18	17	16			
	ID2									
15	14	13	12	11	10	9	8			
			IC)2						
7	6	5	4	3	2	1	0			
	ID2									

숩	垃圾	名称	描述
3:	1:0	ID2	芯片 96 位 ID 寄存器 2

随机数控制寄存器 PRNGCR

寄存器	偏移	类型	复位值	描述
PRNGCR	0x0d0	R/W	0x00	随机数控制寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	1.0	13	12	11	10	9	8
13	14	13				,	· ·
13	14	15	-		10		RDY
7	6	5		3	2	1	

位域	名称	描述
31:9	-	-
o	RDY	PRNG 随机数准备标志,RO
•	ND1	当检测到该信号为 1 时,则可以读取 PRNG_DATAL 和 PRNG_DATAH
7:3	-	-
		PRNG 随机数发生器时钟使能
2	CLKEN	0: 所有时钟无效
		1: 正常工作
		PRNG 随机数发生器时钟配置
1	CLK	0: 三个时钟工作模式(RCHF、RCLF、XTALH);
		1: 两个时钟工作模式(RCHF、RCLF)
		PRNG 种子清零寄存器
	SEEDCLR	1: 种子清零。此时随机数发生器不工作
	BLLDCLK	0: 随机数发生器工作
		注:该信号如果有效,则其为高的时间不能短于 RCLF 一个周期。

随机数输出寄存器低 32 位数据 PRNGDL

寄存器	偏移	类型	复位值	描述
PRNGDL	0x0d4	RO	0x00	随机数输出寄存器低 32 位数据

31	30	29	28	27	26	25	24			
	DATAL									
23	22	21	20	19	18	17	16			
	DATAL									
15	14	13	12	11	10	9	8			
			DA	TAL						
7	6	5	4	3	2	1	0			
	DATAL									

位域	名称	描述
31:0	DATAL	随机数输出寄存器低 32 位数据

随机数输出寄存器高 32 位数据 PRNGDH

寄存器	偏移	类型	复位值	描述
PRNGDH	0x0d8	RO	0x00	随机数输出寄存器高 32 位数据

31	30	29	28	27	26	25	24			
	DATAH									
23	22	21	20	19	18	17	16			
	DATAH									
15	14	13	12	11	10	9	8			
	DATAH									
7	6	5	4	3	2	1	0			
	DATAH									

位域	名称	描述
31:0	DATAH	随机数输出寄存器高 31 位数据

PORTA 唤醒使能控制寄存器 PAWKEN

寄存器	偏移	类型	复位值	描述
PAWKEN	0x100	R/W	0x00	PORTA 唤醒使能控制寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
PAWKEN15	PAWKEN14	PAWKEN13	PAWKEN12	PAWKEN11	PAWKEN10	PAWKEN9	PAWKEN8
7	6	5	4	3	2	1	0
PAWKEN7	PAWKEN6	PAWKEN5	PAWKEN4	PAWKEN3	PAWKEN2	PAWKEN1	PAWKEN0

位域	名称	描述
31:16	-	-
45	DANAUCENIAE	PA15 输入唤醒使能
15	PAWKEN15	1: 使能 0: 禁能
1.4	DAVA/I/FAI4 4	PA14 输入唤醒使能
14	PAWKEN14	1: 使能 0: 禁能
13	PAWKEN13	PA13 输入唤醒使能
13	PAVVKENIS	1: 使能 0: 禁能
12	PAWKEN12	PA12 输入唤醒使能
12	PAVVKEN12	1: 使能 0: 禁能
11	PAWKEN11	PA11 输入唤醒使能
11	PAVVKENII	1: 使能 0: 禁能
10	DAW/KEN10	PA10 输入唤醒使能
10	PAWKEN10	1: 使能 0: 禁能
9	PAWKEN9	PA9 输入唤醒使能
9	PAVVKENS	1: 使能 0: 禁能
8	PAWKEN8	PA8 输入唤醒使能
	FAVVICINO	1: 使能 0: 禁能
7	PAWKEN7	PA7 输入唤醒使能
	PAVVKLIV/	1: 使能 0: 禁能
6	PAWKEN6	PA6 输入唤醒使能
	FAVVICINO	1: 使能 0: 禁能
5	PAWKEN5	PA5 输入唤醒使能
	FAVVICINS	1: 使能 0: 禁能
4	PAWKEN4	PA4 输入唤醒使能
	I AVVINLINA	1: 使能 0: 禁能

SWM211 系列

3	PAWKEN3	PA3 输入唤醒使能
5		1: 使能 0: 禁能
2	PAWKEN2	PA2 输入唤醒使能
2	PAVVKEINZ	1: 使能 0: 禁能
1	PAWKEN1	PA1 输入唤醒使能
1		1: 使能 0: 禁能
	PAWKENO	PAO 输入唤醒使能
		1: 使能 0: 禁能

PORTB 唤醒使能控制寄存器 PBWKEN

寄存器	偏移	类型	复位值	描述
PBWKEN	0x104	R/W	0x00	PORTB 唤醒使能控制寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
PBWKEN15	PBWKEN14	PBWKEN13	PBWKEN12	PBWKEN11	PBWKEN10	PBWKEN9	PBWKEN8
PBWKEN15	PBWKEN14	PBWKEN13	PBWKEN12	PBWKEN11	PBWKEN10	PBWKEN9	PBWKEN8

位域	名称	描述
31:16	-	-
15	DDW/VEN11E	PB15 输入唤醒使能
15	PBWKEN15	1: 使能 0: 禁能
14	PBWKEN14	PB14 输入唤醒使能
14	PBWKEN14	1: 使能 0: 禁能
13	PBWKEN13	PB13 输入唤醒使能
13	FBWKLN13	1: 使能 0: 禁能
12	PBWKEN12	PB12 输入唤醒使能
12	POWNEINIZ	1: 使能 0: 禁能
11	PBWKEN11	PB11 输入唤醒使能
11	FBWKLNII	1: 使能 0: 禁能
10	PBWKEN10	PB10 输入唤醒使能
10	FBWKLNIO	1: 使能 0: 禁能
9	PBWKEN9	PB9 输入唤醒使能
9	FBWKLING	1: 使能 0: 禁能
8	PBWKEN8	PB8 输入唤醒使能
	DWKLING	1: 使能 0: 禁能
7	PBWKEN7	PB7 输入唤醒使能
,	F DVV KLIV/	1: 使能 0: 禁能
6	PBWKEN6	PB6 输入唤醒使能
	DWKENO	1: 使能 0: 禁能
5	PBWKEN5	PB5 输入唤醒使能
,	I DANKTIAD	1: 使能 0: 禁能
4	PBWKEN4	PB4 输入唤醒使能
	F DVV NEIV4	1: 使能 0: 禁能

SWM211 系列

2		PB3 输入唤醒使能
3	PBWKEN3	1: 使能 0: 禁能
2	PBWKEN2	PB2 输入唤醒使能
2		1: 使能 0: 禁能
1	PBWKEN1	PB1 输入唤醒使能
_		1: 使能 0: 禁能
0	DDIAWENIO	PBO 输入唤醒使能
,	PBWKEN0	1: 使能 0: 禁能

PORTM 唤醒使能控制寄存器 PMWKEN

寄存器	偏移	类型	复位值	描述
PMWKEN	0x120	R/W	0x00	PORTM 唤醒使能控制寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
PMWKEN15	PMWKEN14	PMWKEN13	PMWKEN12	PMWKEN11	PMWKEN10	PMWKEN9	PMWKEN8
PMWKEN15	PMWKEN14	PMWKEN13	PMWKEN12	PMWKEN11	PMWKEN10	PMWKEN9	PMWKEN8

位域	名称	描述
31:16	-	-
15	DNAVA/KENI4 E	PM15 输入唤醒使能
15	PMWKEN15	1: 使能 0: 禁能
14	PMWKEN14	PM14 输入唤醒使能
14	PIVIVV KEIN 14	1: 使能 0: 禁能
13	PMWKEN13	PM13 输入唤醒使能
13	PIVIVVEINIS	1: 使能 0: 禁能
12	PMWKEN12	PM12 输入唤醒使能
12	PIVIVVREINIZ	1: 使能 0: 禁能
11	PMWKEN11	PM11 输入唤醒使能
11	FIVIVVICIALI	1: 使能 0: 禁能
10	PMWKEN10	PM10 输入唤醒使能
10	FIVIVACEIVIO	1: 使能 0: 禁能
9	PMWKEN9	PM9 输入唤醒使能
5	FIVIVVICING	1: 使能 0: 禁能
8	PMWKEN8	PM8 输入唤醒使能
	I WWW.EIVO	1: 使能 0: 禁能
7	PMWKEN7	PM7 输入唤醒使能
,	FIVIVVICIAT	1: 使能 0: 禁能
6	PMWKEN6	PM6 输入唤醒使能
	I WWW.EIVO	1: 使能 0: 禁能
5	PMWKEN5	PM5 输入唤醒使能
3	FIVIVVICING	1: 使能 0: 禁能
4	PMWKEN4	PM4 输入唤醒使能
	FIVIVV NEIN4	1: 使能 0: 禁能

SWM211 系列

2	PMWKEN3	PM3 输入唤醒使能
3		1: 使能 0: 禁能
2	PMWKEN2	PM2 输入唤醒使能
2		1: 使能 0: 禁能
1	PMWKEN1	PM1 输入唤醒使能
1		1: 使能 0: 禁能
	PMWKENO	PMO 输入唤醒使能
0	PIVIVVKENU	1: 使能 0: 禁能

PORTA 唤醒状态寄存器 PAWKSR

寄存器	偏移	类型	复位值	描述
PAWKSR	0x130	R/W1C	0x00	PORTA 唤醒状态寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
PAWKSR15	PAWKSR14	PAWKSR13	PAWKSR12	PAWKSR11	PAWKSR10	PAWKSR9	PAWKSR8
7	6	5	4	3	2	1	0
PAWKSR7	PAWKSR6	PAWKSR5	PAWKSR4	PAWKSR3	PAWKSR2	PAWKSR1	PAWKSR0

位域	名称	描述
31:16	-	-
		PA15 输入唤醒状态标志位
15	PAWKSR15	唤醒后硬件置 1,软件写 1 清除
		1: 唤醒 0: 未唤醒
		PA14 输入唤醒状态标志位
14	PAWKSR14	唤醒后硬件置 1,软件写 1 清除
		1: 唤醒 0: 未唤醒
		PA13 输入唤醒状态标志位
13	PAWKSR13	唤醒后硬件置 1,软件写 1 清除
		1: 唤醒 0: 未唤醒
		PA12 输入唤醒状态标志位
12	PAWKSR12	唤醒后硬件置 1,软件写 1 清除
		1: 唤醒 0: 未唤醒
		PA11 输入唤醒状态标志位
11	PAWKSR11	唤醒后硬件置 1,软件写 1 清除
		1: 唤醒 0: 未唤醒
		PA10 输入唤醒状态标志位
10	PAWKSR10	唤醒后硬件置 1, 软件写 1 清除
		1: 唤醒 0: 未唤醒
		PA9 输入唤醒状态标志位
9	PAWKSR9	唤醒后硬件置 1, 软件写 1 清除
		1: 唤醒 0: 未唤醒
		PA8 输入唤醒状态标志位
8	PAWKSR8	唤醒后硬件置 1,软件写 1 清除
		1: 唤醒 0: 未唤醒

SWM211 系列

			300101211 7J(7-)
		PA7 输入唤醒状态标志位	
7	PAWKSR7	唤醒后硬件置 1, 软件写 1 清除	
		1: 唤醒 0: 未唤醒	
		PA6 输入唤醒状态标志位	
6	PAWKSR6	唤醒后硬件置 1, 软件写 1 清除	
		1: 唤醒 0: 未唤醒	
		PA5 输入唤醒状态标志位	
5	PAWKSR5	唤醒后硬件置 1, 软件写 1 清除	
		1: 唤醒 0: 未唤醒	
		PA4 输入唤醒状态标志位	
4	PAWKSR4	唤醒后硬件置 1, 软件写 1 清除	
		1: 唤醒 0: 未唤醒	
		PA3 输入唤醒状态标志位	
3	PAWKSR3	唤醒后硬件置 1, 软件写 1 清除	
		1: 唤醒 0: 未唤醒	
		PA2 输入唤醒状态标志位	
2	PAWKSR2	唤醒后硬件置 1, 软件写 1 清除	
		1: 唤醒 0: 未唤醒	
		PA1 输入唤醒状态标志位	
1	PAWKSR1	唤醒后硬件置 1, 软件写 1 清除	
		1: 唤醒 0: 未唤醒	
		PAO 输入唤醒状态标志位	
0	PAWKSR0	唤醒后硬件置 1, 软件写 1 清除	
		1: 唤醒 0: 未唤醒	

PORTB 唤醒状态寄存器 PBWKSR

寄存器	偏移	类型	复位值	描述
PBWKSR	0x134	R/W1C	0x00	PORTB 唤醒状态寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
PBWKSR15	PBWKSR14	PBWKSR13	PBWKSR12	PBWKSR11	PBWKSR10	PBWKSR9	PBWKSR8
7	6	5	4	3	2	1	0
PBWKSR7	PBWKSR6	PBWKSR5	PBWKSR4	PBWKSR3	PBWKSR2	PBWKSR1	PBWKSR0

位域	名称	描述
31:16	-	-
		PB15 输入唤醒状态标志位
15	PBWKSR15	唤醒后硬件置 1, 软件写 1 清除
		1: 唤醒 0: 未唤醒
		PB14 输入唤醒状态标志位
14	PBWKSR14	唤醒后硬件置 1, 软件写 1 清除
		1: 唤醒 0: 未唤醒
		PB13 输入唤醒状态标志位
13	PBWKSR13	唤醒后硬件置 1, 软件写 1 清除
		1: 唤醒 0: 未唤醒
		PB12 输入唤醒状态标志位
12	PBWKSR12	唤醒后硬件置 1,软件写 1 清除
		1: 唤醒 0: 未唤醒
		PB11 输入唤醒状态标志位
11	PBWKSR11	唤醒后硬件置 1,软件写 1 清除
		1: 唤醒 0: 未唤醒
		PB10 输入唤醒状态标志位
10	PBWKSR10	唤醒后硬件置 1,软件写 1 清除
		1: 唤醒 0: 未唤醒
		PB9 输入唤醒状态标志位
9	PBWKSR9	唤醒后硬件置 1,软件写 1 清除
		1: 唤醒 0: 未唤醒
		PB8 输入唤醒状态标志位
8	PBWKSR8	唤醒后硬件置 1,软件写 1 清除
		1: 唤醒 0: 未唤醒

SWM211 系列

		244 IAITTT VICTO
	PB7 输入唤醒状态标志位	
PBWKSR7	唤醒后硬件置 1,软件写 1 清除	
	1: 唤醒 0: 未唤醒	
	PB6 输入唤醒状态标志位	
PBWKSR6	唤醒后硬件置 1, 软件写 1 清除	
	1: 唤醒 0: 未唤醒	
	PB5 输入唤醒状态标志位	
PBWKSR5	唤醒后硬件置 1, 软件写 1 清除	
	1: 唤醒 0: 未唤醒	
	PB4 输入唤醒状态标志位	
PBWKSR4	唤醒后硬件置 1, 软件写 1 清除	
	1: 唤醒 0: 未唤醒	
	PB3 输入唤醒状态标志位	
PBWKSR3	唤醒后硬件置 1,软件写 1 清除	
	1: 唤醒 0: 未唤醒	
	PB2 输入唤醒状态标志位	
PBWKSR2	唤醒后硬件置 1,软件写 1 清除	
	1: 唤醒 0: 未唤醒	
	PB1 输入唤醒状态标志位	
PBWKSR1	唤醒后硬件置 1, 软件写 1 清除	
	1: 唤醒 0: 未唤醒	
	PBO 输入唤醒状态标志位	
PBWKSR0	唤醒后硬件置 1,软件写 1 清除	
	1: 唤醒 0: 未唤醒	
	PBWKSR5 PBWKSR4 PBWKSR3 PBWKSR2	PBWKSR7 唤醒后硬件置 1, 软件写 1 清除 1: 唤醒 0: 未唤醒 PBWKSR6 中BE 输入唤醒状态标志位 中BWKSR6 中國后硬件置 1, 软件写 1 清除 1: 唤醒 0: 未唤醒 PBWKSR5 中國后硬件置 1, 软件写 1 清除 1: 唤醒 0: 未唤醒 PBWKSR4 中國后硬件置 1, 软件写 1 清除 1: 中國 0: 未唤醒 PBWKSR3 中國后硬件置 1, 软件写 1 清除 1: 中國 0: 未唤醒 PBWKSR3 中國后硬件置 1, 软件写 1 清除 1: 中國 0: 未唤醒 PBWKSR1 中國后硬件置 1, 软件写 1 清除 1: 中國 0: 未唤醒 PBWKSR1 中國后硬件置 1, 软件写 1 清除 1: 中國 0: 未唤醒 PBWKSR0 中國后硬件置 1, 软件写 1 清除

PORTM 唤醒状态寄存器 PMWKSR

寄存器	偏移	类型	复位值	描述
PMWKSR	0x150	R/W1C	0x00	PORTM 唤醒状态寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
PMWKSR15	PMWKSR14	PMWKSR13	PMWKSR12	PMWKSR11	PMWKSR10	PMWKSR9	PMWKSR8
7	6	5	4	3	2	1	0
PMWKSR7	PMWKSR6	PMWKSR5	PMWKSR4	PMWKSR3	PMWKSR2	PMWKSR1	PMWKSR0

位域	名称	
31:16	-	-
		PM15 输入唤醒状态标志位
15	PMWKSR15	唤醒后硬件置 1,软件写 1 清除
		1: 唤醒 0: 未唤醒
		PM14 输入唤醒状态标志位
14	PMWKSR14	唤醒后硬件置 1, 软件写 1 清除
		1: 唤醒 0: 未唤醒
		PM13 输入唤醒状态标志位
13	PMWKSR13	唤醒后硬件置 1,软件写 1 清除
		1: 唤醒 0: 未唤醒
		PM12 输入唤醒状态标志位
12	PMWKSR12	唤醒后硬件置 1,软件写 1 清除
		1: 唤醒 0: 未唤醒
		PM11 输入唤醒状态标志位
11	PMWKSR11	唤醒后硬件置 1,软件写 1 清除
		1: 唤醒 0: 未唤醒
		PM10 输入唤醒状态标志位
10	PMWKSR10	唤醒后硬件置 1,软件写 1 清除
		1: 唤醒 0: 未唤醒
		PM9 输入唤醒状态标志位
9	PMWKSR9	唤醒后硬件置 1,软件写 1 清除
		1: 唤醒 0: 未唤醒
		PM8 输入唤醒状态标志位
8	PMWKSR8	唤醒后硬件置 1,软件写 1 清除
		1: 唤醒 0: 未唤醒

SWM211 <u>系列</u>

		51111222731	
		PM7 输入唤醒状态标志位	
7	PMWKSR7	唤醒后硬件置 1,软件写 1 清除	
		1: 唤醒 0: 未唤醒	
		PM6 输入唤醒状态标志位	
6	PMWKSR6	唤醒后硬件置 1,软件写 1 清除	
		1: 唤醒 0: 未唤醒	
		PM5 输入唤醒状态标志位	
5	PMWKSR5	唤醒后硬件置 1,软件写 1 清除	
		1: 唤醒 0: 未唤醒	
		PM4 输入唤醒状态标志位	
4	PMWKSR4	唤醒后硬件置 1,软件写 1 清除	
		1: 唤醒 0: 未唤醒	
		PM3 输入唤醒状态标志位	
3	PMWKSR3	唤醒后硬件置 1,软件写 1 清除	
		1: 唤醒 0: 未唤醒	
		PM2 输入唤醒状态标志位	
2	PMWKSR2	唤醒后硬件置 1,软件写 1 清除	
		1: 唤醒 0: 未唤醒	
		PM1 输入唤醒状态标志位	
1	PMWKSR1	唤醒后硬件置 1,软件写 1 清除	
		1: 唤醒 0: 未唤醒	
		PM0 输入唤醒状态标志位	
0	PMWKSR0	唤醒后硬件置 1,软件写 1 清除	
		1: 唤醒 0: 未唤醒	

IO 滤波窗口时间配置寄存器 0 IOFILT0

寄存器	偏移	类型	复位值	描述
IOFILT0	0x400	R/W	0x00	IO 滤波窗口时间配置寄存器 0

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
	-						
7	6	5	4	3	2	1	0
-	IOSEL		CLKDIV	TIM			

位域	名称	描述				
31:7	-	-				
		0 组 IO 滤波选择控制位				
		00:选择基础序号的 IO 具有滤波功能				
		01:选择基础序号+1 的 IO 具有滤波功能				
6:5	IOSEL	10: 选择基础序号+2 的 IO 具有滤波功能				
0.5	IOSEL	11:选择基础序号+3的IO具有滤波功能				
		例如: 若基础序号的 IO 为 B0, 当该位为 00 时,则 B0 具有滤波功能;当该位为				
		01 时,则 B1 具有滤波功能;当该位为 10 时,则 B2 具有滤波功能;当该位为 11				
		时,则 B3 具有滤波功能。				
		0 组 IO 滤波时钟是否采用分频				
4	CLKDIV	0: 不分频				
		1: 分频(固定为 32 分频)				
		0 组 IO 硬件滤波窗口时间配置寄存器(若配置则对某 IO 的输入具有滤波功能,				
		则该寄存器存在)				
		若滤波时钟分频:				
3:0	TIM	滤波窗口时间=32*Tfilter_clk*2^ TIM				
5:0	TIVI	若滤波时钟不分频:				
		滤波窗口时间=Tfilter_clk*2^ TIM				
		当 TIM 为 0 时,则不具有滤波功能。因此,只有当将 TIM 配置大于 0 时,滤波功				
		能才能开启。				

IO 滤波窗口时间配置寄存器 1 IOFILT1

寄存器	偏移	类型	复位值	描述
IOFILT1	0x404	R/W	0x00	IO 滤波窗口时间配置寄存器 1

31	30	29	28	27	26	25	24	
				-				
23	22	21	20	19	18	17	16	
				-				
15	14	13	12	11	10	9	8	
	-							
7	6	5	4	3	2	1	0	
-	IOSEL		CLKDIV	TIM				

位域	名称	描述				
31:7	-	-				
		1 组 IO 滤波选择控制位				
		00:选择基础序号的 IO 具有滤波功能				
		01:选择基础序号+1 的 IO 具有滤波功能				
6:5	IOSEL	10: 选择基础序号+2 的 IO 具有滤波功能				
0.5	IOSEE	11:选择基础序号+3的IO具有滤波功能				
		例如: 若基础序号的 IO 为 B0, 当该位为 00 时,则 B0 具有滤波功能;当该位为				
		01 时,则 B1 具有滤波功能;当该位为 10 时,则 B2 具有滤波功能;当该位为 11				
		时,则 B3 具有滤波功能。				
		1 组 IO 滤波时钟是否采用分频				
4	CLKDIV	0: 不分频				
		1: 分频(固定为 32 分频)				
		1 组 IO 硬件滤波窗口时间配置寄存器(若配置则对某 IO 的输入具有滤波功能,				
		则该寄存器存在)				
		若滤波时钟分频:				
3:0	ТІМ	滤波窗口时间=32*Tfilter_clk*2^ TIM				
5.0	I IIVI	若滤波时钟不分频:				
		滤波窗口时间=Tfilter_clk*2^ TIM				
		当 TIM 为 0 时,则不具有滤波功能。因此,只有当将 TIM 配置大于 0 时,滤波功				
		能才能开启。				

芯片复位屏蔽寄存器 PRSTEN

寄存器	偏移	类型	复位值	描述
PRSTEN	0x720	R/W	0x0000_0000	芯片复位屏蔽寄存器

31	30	29	28	27	26	25	24		
				-					
23	22	21	20	19	18	17	16		
				-					
15	14	13	12	11	10	9	8		
				-					
7	6	5	4	3	2	1	0		
	PRSTEN								

位域	名称	描述
31:8	-	-
7:0	PRSTEN	只有当该寄存器配置为 0x55 时,才能对 PRSTR0 和 PRSTR1 进行写操作。

芯片复位配置寄存器 0 PRSTR0

寄存器	偏移	类型	复位值	描述
PRSTRO	0x724	R/W	0x0000_0000	芯片复位配置寄存器 0

31	30	29	28	27	26	25	24
		-			SARADC0	ANAC	-
23	22	21	20	19	18	17	16
	-	DIV	CORDIC	-			
15	14	13	12	11	10	9	8
I2C0	-	SPI0	PWM	TIMER WDT -			-
7	6	5	4	3	2	1	0
UART1	UART0	-	GPIOM		-	GPIOB	GPIOA

位域	名称	描述
31	-	-
30:27	-	-
	CARADCO	SARADCO_CTRL 模块复位配置位
26	SARADC0	将该位置 1,则复位该模块。
25	ANAC	ANAC 模块复位配置位
25	ANAC	将该位置 1,则复位该模块。
24:22	-	-
21	DIV	DIV 模块复位配置位
21	DIV	将该位置 1,则复位该模块。
20	CORDIC	CORDIC 模块复位配置位
20	CORDIC	将该位置 1,则复位该模块。
19:16	-	-
15	12C0	12C0 模块复位配置位
15	1200	将该位置 1,则复位该模块。
14	SPI1	SPI1 模块复位配置位
14	SPII	将该位置 1,则复位该模块。
13	SPI0	SPIO 模块复位配置位
13	SPIO	将该位置 1,则复位该模块。
12	PWM	PWM 模块复位配置位
12	PVVIVI	将该位置 1,则复位该模块。
11	TIMER	TIMER 模块复位配置位
11	HIVIER	将该位置 1,则复位该模块。
10	WDT	WDT 模块复位配置位
	WVD1	将该位置 1,则复位该模块。
9:8	-	-

SWM211 <u>系列</u>

7	UART1	UART1 模块复位配置位			
,	OARTI	将该位置 1,则复位该模块。			
c	UARTO	UARTO 模块复位配置位			
6		将该位置 1,则复位该模块。			
5	-	-			
4		GPIOM 模块复位配置位			
4	GPIOM	将该位置 1,则复位该模块。			
2:3	-	-			
1	GPIOB	GPIOB 模块复位配置位			
1		将该位置 1,则复位该模块。			
0		GPIOA 模块复位配置位			
U	GPIOA	将该位置 1,则复位该模块。			

芯片复位配置寄存器 1 PRSTR1

寄存器	偏移	类型	复位值	描述
PRSTR1	0x728	R/W	0x0000_0000	芯片复位配置寄存器 1

31	30	29	28	27	26	25	24
		-	QEI		-		
23	22	21	20	19	18	17	16
-	BTIMR	-	IOFILT		-	-	
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
				-			

位域	名称	描述
31:27	-	-
26		QEI 模块复位配置位
20	QEI	将该位置 1,则复位该模块
23:25	-	-
22	BTIMR	BTIMR 模块复位配置位
22	BIIIVIK	将该位置 1,则复位该模块
21	_	-
20	IOFILT	IOFILT 模块复位配置位
20		将该位置 1,则复位该模块
19:0	-	-

内部高频 RC 振荡器配置寄存器 HRCCR

寄存器	偏移	类型	复位值	描述
HRCCR	0x00	R/W	0x1	内部高频 RC 振荡器配置寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
			-				ON

位域	名称	描述		
31:1	-			
		内部高频 RC 振荡器使能		
0	ON	0: 关闭		
		1: 开启		

BOD 控制寄存器 BODCR

寄存器	偏移	类型	复位值	描述
BODCR	0x10		0	BOD 控制寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
			-			RST	LVL
7	6	5	4	3	2	1	0
RSTLVL		INTLVL			-	IE	-

位域	名称	描述
31:7	-	-
		BOD 复位电位配置寄存器
		000: BOD 1.65V 产生复位
9:7	RSTLVL	001: BOD 1.85V 产生复位
5.7	KSTEVE	010: BOD 2.05V 产生复位
		011: BOD 2.65V 产生复位
		100: BOD 3.45V 产生复位
		BOD 中断电位配置寄存器
		000: BOD 1.90V 产生中断
6:4	INTLVL	001: BOD 2.10V 产生中断
0.4	INTEVE	010: BOD 2.30V 产生中断
		011: BOD 2.50V 产生中断
		100: BOD 2.70V 产生中断
3:2	-	-
		BOD 中断功能使能寄存器
1	IE	1: 使能
		0: 关闭
0	-	-

BOD 中断状态寄存器 BODSR

寄存器	偏移	类型	复位值	描述
BODSR	0x14	R/W1C	0	BOD 中断状态寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
			-			ST	IF

位域	名称	描述			
31:1	-				
1	ST	DD 原始状态寄存器			
		BOD 中断状态标志位,写 1 清除			
0	IF	1: 已触发中断电压			
U III		0:未触发中断电压			
		注:只有当 BODCR.IE=1 时,BODSR.IF 才会置位			

晶体振荡器控制寄存器 XTALCR

寄存器	偏移	类型	复位值	描述
XTALCR	0x20	R/W	0	晶体振荡器控制寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
	-				DRV		
15	14	13	12	11	10	9	8
-				32KDRV			
7	6	5	4	3	2	1	0
-	-	DET	32KDET	-	-	ON	32KON

位域	名称	描述
31:17	-	
		高频晶体振荡器驱动能力控制信号
20:16	DRV	每 bit 位控制的驱动能力一样,将该寄存器配置几个 bit 为 1,则表示有几倍的驱
		动能力
15:12	-	-
11:8	32KDRV	32K 低频晶振频率修调控制信号
		外接高频晶振停振检测
5	DET	0: 关闭
		1: 开启
		外接低频晶振停振检测
4	32KDET	0: 关闭
		1: 开启
3:2	-	-
		外接高频晶振使能
1	ON	0: 关闭
		1: 开启
		外接低频晶振使能
0	32KON	0: 关闭
		1: 开启

晶体振荡器状态寄存器 XTALSR

寄存器	偏移	类型	复位值	描述
XTALSR	0x24	R/W1C	0	晶体振荡器状态寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
			-			STOP	32KSTOP

位域	名称	苗述			
31:2	-				
		外接高频晶振状态,写 1 清 0			
1	STOP	0: 正常			
		1:停振,发生停震后将自动切换至 RCHF			
		外接低频晶振状态,写 1 清 0			
0	32KSTOP	0: 正常			
		1: 停振			

PLL 控制寄存器 PLLCR

寄存器	偏移	类型	复位值	描述
PLLCR	0x40		0	PLL 控制寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
		-		RST	OFF	INSEL	OUTEN

位域	名称	描述
31:4	-	-
		PLL 模块 RESET 开关控制
3	RST	0: 模块不复位
		1: 模块复位
		PLL 模块 POWER DOWN 开关控制
2	OFF	0: 模块开启
		1:模块关闭,进入 powerdown 模式
		参考时钟选择
1	INSEL	1: 选择内部 PLL 时钟作为参考时钟
		0: 选择高频晶体振荡器作为参考时钟
		时钟输出使能
o	OUTEN	0: 输出时钟关闭
		1: 输出时钟开启

PLL 分频寄存器 PLLDIV

寄存器	偏移	类型	复位值	描述
PLLDIV	0x44		0	PLL 分频寄存器

31	30	29	28	27	26	25	24	
			-	ОИТ				
23	22	21	20	19	18	17	16	
	-		INDIV					
15	14	13	12	11	10	9	8	
			-				FBDIV	
7	6	5	4	3	2	1	0	
	FBDIV							

位域	名称	描述
31:26	-	-
		PLL Post 分频寄存器
25:24	OUTDIV	00: 8分频
25:24	OUTDIV	01: 4分频
		1x: 2 分频
23:21	-	-
		PLL Reference 分频寄存器
20:16	INDIV	0:不可赋值
20.16	INDIV	N: N 分频
		数值对应 1-31
15:9	-	-
		PLL FeedBack 分频寄存器
8:0	FBDIV	0:不可赋值
0.0	LDDIA	N: N 分频
		数值为 1-511,对应分频为 1-551

PLL 状态寄存器 PLLST

寄存器	偏移	类型	复位值	描述
PLLST	0x4C		0	PLL 状态寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
			-				LOCK

位域	名称	描述
31:1	-	-
		PLL LOCK 输出标志信号(只有当 CPU 连续两次检测到该寄存器为 1 后,才能将
		CLK_EN 位置为有效,使用 PLL 时钟)
ľ	LOCK	1: PLL 已锁定
		0: PLL 未锁定

内部低频 RC 配置寄存器 LRCCR

寄存器	偏移	类型	复位值	描述
LRCCR	0x050	R/W	0x0000_0001	内部低频 RC 配置寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
			-				ON

位域	名称	描述	
31:1	-	-	
		内置低频 RC 使能	
0	ON	0: 关闭	
		1: 开启	

DAC 控制寄存器 DACCR

寄存器	偏移	类型	复位值	描述
DACCR	0x90		0	DAC 控制寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
			DA	ATA			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
			-				EN

位域	名称	描述
31:24	-	-
23:16	DATA	DAC 数据输入
15:1	-	-
		DAC 使能寄存器
0	EN	0: 关闭
		1: 开启

注: DAC_TRIM 寄存器详见 PGACR 寄存器 CMPREF 位

6.6 端口控制模块(PORTCON)

6.6.1 概述

端口控制模块主要包括管脚输入使能,管脚功能配置,I/O 上拉、下拉、推挽、开漏配置等。 SWM211 系列所有型号 PORTCON 模块操作均相同,部分型号无对应管脚时,对应寄存器位无效。

6.6.2 特性

- 配置 I/O 引脚为特定功能
- 支持上拉/下拉/推挽/开漏功能
- 配置管脚输入使能

6.6.3 模块结构框图

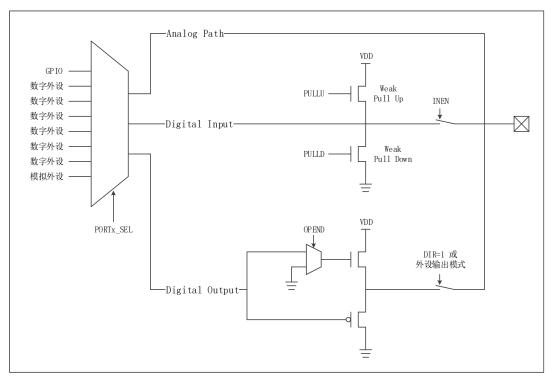


图 6-5 PORTCON 模块结构框图

6.6.4 功能描述

端口控制模块主要包括管脚输入使能,管脚功能配置,I/O上拉、下拉、推挽、开漏配置等。

引脚输入使能

本芯片引脚作为输入或需要输入的外设时,需要打开引脚对应输入使能寄存器(INEN_x),当引脚所在寄存器对应位设置为1时,输入使能打开,引脚可获取外部状态。

功能选择配置

端口复用通过端口复用寄存器 PORTx_FUNC 寄存器实现。当指定位配置为不同的值时,引脚功能实现切换。

每个端口可能具备以下功能:

- 通用输入/输出接口:引脚作为通用输入输出功能,输入或输出指定数字电平
- 外设接口:将对应引脚切换至指定数字功能,如 TIMER/UART/PWM 等
- 模拟接口:将对应引脚切换至模拟功能,如模数转换器、时钟输入等
- 下载接口:使用仿真器连接下载程序及单步执行

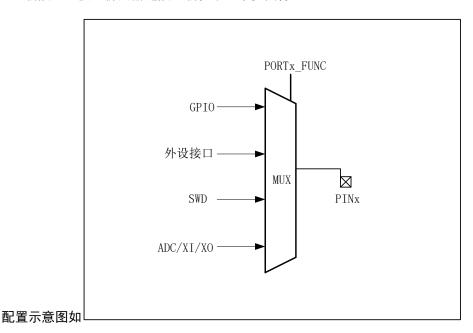


图 6-6 所示。

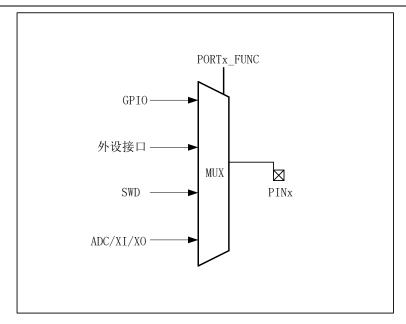


图 6-6 引脚配置示意图

上拉/下拉/推挽/开漏配置

本芯片每个引脚均可配置为以下模式:

- 上拉输入
- 下拉输入
- 推挽输出
- 开漏输出

当对应引脚作为除 GPIO 之外的功能引脚时,此配置同样生效。

作为输入功能使用时,GPIO DIR 寄存器对应位为 0,该状态为上电默认状态。此时可以开启内部上拉和下拉功能,通过配置 PULLU 及 PULLD 寄存器实现,将引脚所对应寄存器指定位配置为 1,即可实现该功能。

如图 6-7 所示:

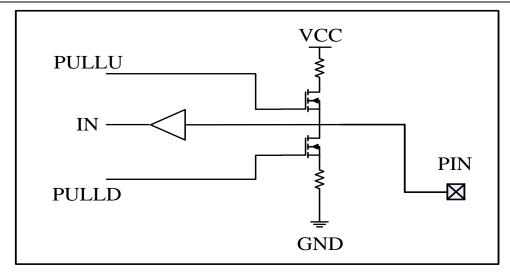


图 6-7 IO 输入上拉下拉

作为输出功能使用时, GPIO DIR 寄存器对应位为 1, 此时可配置引脚状态为推挽输出或开漏输出,,通过配置 OPEND 寄存器实现。

作为推挽输出时,GPIO OPEND 寄存器对应位为 0,芯片具备拉/灌电流的能力,GPIO DATA 寄存器配置值将反映到对应引脚电平。

如图 6-8 所示:

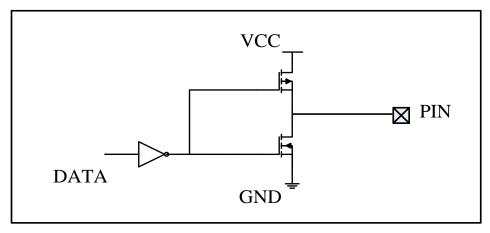


图 6-8 推挽输出

作为开漏输出时, GPIO OPEND 寄存器对应位为 1, 芯片只具备灌电流的能力, 不具备拉电流能力。

GPIO 输出配置为 0 时,对应引脚将输出 0,配置为 1 时,输出高阻。

若需要输出1时,需要将内部/外部引脚接上拉电阻,通过上拉实现高电平输出。

如图 6-9 所示:

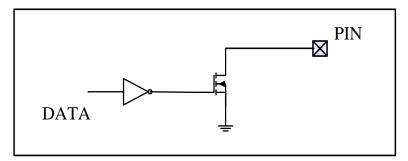
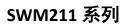


图 6-9 开漏输出

6.6.5 寄存器映射

名称	偏移	类型	复位值	描述
POTRG	BAS	E: 0x400A	0000	
PORTA_FUNC0	0x00	R/W	0x00	端口 A 功能配置寄存器 0
PORTA_FUNC1	0x04	R/W	0x00	端口 A 功能配置寄存器 1
PORTB_FUNC0	0x10	R/W	0x00	端口 B 功能配置寄存器 0
PORTB_FUNC1	0x14	R/W	0x00	端口 B 功能配置寄存器 1
PORTM_FUNC0	0x80	R/W	0x00	端口 M 功能配置寄存器 0
PORTM_FUNC1	0x84	R/W	0x00	端口 M 功能配置寄存器 1
PORTn	BAS	E: 0x400A	0100	
PULLU_A	0x00	R/W	0x00	端口 A 上拉使能控制寄存器
PULLU_B	0x10	R/W	0x00	端口 B 上拉使能控制寄存器
PULLU_M	0x80	R/W	0x00	端口 M 上拉使能控制寄存器
PULLD_A	0x100	R/W	0x00	端口 A 下拉使能控制寄存器
PULLD_B	0x110	R/W	0x00	端口 B 下拉使能控制寄存器
PULLD_M	0x180	R/W	0x00	端口 M 下拉使能控制寄存器
INEN_A	0x200	R/W	0x00	端口 A 输入使能控制寄存器
INEN_B	0x210	R/W	0x00	端口 B 输入使能控制寄存器
INEN_M	0x280	R/W	0x00	端口 M 输入使能控制寄存器
OPEND_A	0x300	R/W	0x00	端口 A 开漏使能控制寄存器
OPEND_B	0x310	R/W	0x00	端口 B 开漏使能控制寄存器
OPEND_M	0x380	R/W	0x00	端口 M 开漏使能控制寄存器


6.6.6 寄存器描述

PORTA_FUNC0

寄存器	偏移	类型	复位值	描述
PORTA_FUNC0	0x00	R/W	0xF0	端口 A 功能配置寄存器 0

31	30	29	28	27	26	25	24	
	PII	N7		PIN6				
23	22	21	20	19	18	17	16	
	PIN5				PIN4			
15	14	13	12	11	10	9	8	
	PII	N3			PII	N2		
7	6	5	4	3	2	1	0	
	PIN1				PII	NO		

位域	名称	描述
		Port A7 功能选择
		0000: GPIO
		0001: MPUD15
31:28	PIN7	0010: I2COSDA
		0011: PWM0BN
		0100: BT1O
		其它: 保留
		Port A6 功能选择
		0000: GPIO
		0001: MPUD14
27:24	PIN6	0010: I2COSCL
		0011: PWM0B
		0100: BT0O
		其它: 保留
		Port A5 功能选择
		0000: GPIO
		0001: MPUD13
23:20	PIN5	0010: UART1RX
23.20	FINS	0011: PWM1A
		0100: PWM0AN
		0101: PWM1AN
		其它: 保留

			SWINIZIT ACA
		Port A4 功能选择	
		0000: GPIO	
		0001: MPUD12	
19:16	PIN4	0010: UART1TX	
19:10	PIN4	0011: PWM1B	
		0100: PWM1AN	
		0101: PWM1BN	
		其它: 保留	
		Port A3 功能选择	
		0000: GPIO	
		0001: MPUD11	
15:12	PIN3	0010: PWM0A	
		0011: PWM1AN	
		0100: PWM0AN	
		其它: 保留	
		Port A2 功能选择	
		0000: GPIO	
		0001: MPUD10	
11:8	PIN2	0010: PWM1AN	
		0011: PWM0AN	
		0100: PWM1A	
		其它: 保留	
		Port A1 功能选择	
		0000: GPIO	
		0001: MPUD9	
7:4	PIN1	0010: I2C0SDA	
7.4	FINI	0011: UARTOTX	
		0100: PWM1BN	
		0101: PWM1B	
		其它: 保留	
		Port A0 功能选择	
		0000: GPIO	
		0001: MPUD8	
		0010: I2C0SCL	
3:0	PIN0	0011: UARTORX	
		0100: PWM0AN	
		0101: PWM1BN	
		0110: PWM0A	
		其它: 保留	

PORTA_FUNC1

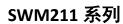
寄存器	偏移	类型	复位值	描述
PORTA_FUNC1	0x04	R/W	0x00	端口 A 功能配置寄存器 1

31	30	29	28	27	26	25	24	
	PIN	115		PIN14				
23	22	21	20	19	18	17	16	
	PIN13				PIN12			
15	14	13	12	11	10	9	8	
	PIN	l11			PIN	V10		
7	6	5	4	3	2	1	0	
	PIN9				PII	N8		

位域	名称	描述
		Port A15 功能选择
31:28	DINI1 F	0000: GPIO
31:28	PIN15	0001: MPUD7
		其它: 保留
		Port A14 功能选择
		0000: GPIO
		0001: MPUD6
27:24	PIN14	0010: ТОІ
		0011: ТОО
		0100: ADCO_CH0/ACMPVP3
		其它: 保留
		Port A13 功能选择
		0000: GPIO
23:20	PIN13	0001: MPUD5
		0010: OPAVN1
		其它: 保留
		Port A12 功能选择
		0000: GPIO
19:16	PIN12	0001: MPUD4
		0111: OPAVN2
		其它: 保留

SWM211 系列

		Port A11 功能选择
		0000: GPIO
15:12	PIN11	0001: MPUD3
15.12	PINII	0010: PWM_CLK1
		0011: ADCO_CH1/OPAOUT2
		其它: 保留
		Port A10 功能选择
		0000: GPIO
11:8	PIN10	0001: MPUD2
		0111: OPAVP2
		其它: 保留
		Port A9 功能选择
		0000: GPIO
7:4	PIN9	0111: MPUD1
		0111: OPAVP1
		其它: 保留
		Port A8 功能选择
		0000: GPIO
3:0	PIN8	0001: MPUD0
5.0	FIINO	0010: UART1CTS
		0111: ADCO_CH2/OPAOUT1
		其它: 保留



PORTB_FUNC0

寄存器	偏移	类型	复位值	描述
PORTB_FUNC0	0x10	R/W	0x00	端口 B 功能配置寄存器 0

31	30	29	28	27	26	25	24	
	PIN7				PIN6			
23	22	21	20	19	18	17	16	
PIN5				PIN4				
15	14	13	12	11	10	9	8	
	PII	N3			PII	N2		
7	6	5	4	3	2	1	0	
PIN1					PII	N0		

位域	名称	描述
		Port B7 功能选择
		0000: GPIO
		0001: UART1TX
31:28	PIN7	0010: T2I
		0011: T2O
		0111: ADCO_CH5/OPAVPO
		其它:保留
		Port B6 功能选择
		0000: GPIO
		0001: MPUWR
		0010: INDEX
27:24	PIN6	0011: PWM_BRK1
27.24	FINO	0100: HALL2
		0101: TOI
		0110: T0O
		0111: ADCO_CH6/ACMPVP0
		其它: 保留

Port B5 功能选择 0000: GPIO 0001: MPURS 0010: QEB 0011: I2COSDA 0100: HALL1 0101: T1I	
0001: MPURS 0010: QEB 0011: I2COSDA 0100: HALL1 0101: T1I	
0010: QEB 0011: I2COSDA 0100: HALL1 0101: T1I	
0011: I2COSDA 0100: HALL1 0101: T1I	
23:20 PIN5 0100: HALL1 0101: T1I	
0100: HALL1 0101: T1I	
0110: T1O	
0111: ADCO_CH7/ACMPVP1	
其它: 保留	
Port B4 功能选择	
0000: GPIO	
0001: MPUCSN	
0010: QEA	
19:16 PIN4 0011: I2COSCL	
0100: HALL0	
0111: ADCO_CH8/ACMPVP2	
其它: 保留	
Port B3 功能选择	
0000: GPIO	
15:12 PIN3 0001: UARTORX	
0111: ADCO_CH9/OPA_VREF	
其它: 保留	
Port B2 功能选择	
0000: GPIO	
11:8 PIN2 0001: UARTOTX	
0111: ACMPVN0	
其它: 保留	
Port B1 功能选择	
0000: GPIO	
0001: UARTOCTS	
7:4 PIN1 0010: SPI0DATA3	
0011: BT3O	
0111: ACMPVN1	
其它: 保留	
Port BO 功能选择	
0000: GPIO	
0001: UARTORTS	
3:0 PINO 0010: SPI0DATA2	
0011: BT2O	
0111: ACMPVN2	
其它: 保留	

PORTB_FUNC1

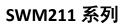
寄存器	偏移	类型	复位值	描述
PORTB_FUNC1	0x14	R/W	0x00	端口 B 功能配置寄存器 1

31	30	29	28	27	26	25	24	
	PIN15				PIN14			
23	22	21	20	19	18	17	16	
	PIN13				PIN12			
15	14	13	12	11	10	9	8	
PIN11					PIN	110		
7	6	5	4	3	2	1	0	
	PIN9				PII	N8		

位域	名称	描述
		Port B15 功能选择
		0000: GPIO
24.20	DINI4 F	0001: UARTORX
31:28	PIN15	0010: SPI1SSEL
		0011: BT3O
		其它: 保留
		Port B14 功能选择
		0000: GPIO
		0001: UARTOTX
		0010: SPI1MISO
27:24	PIN14	0011: CAN0TX
		0100: PWM_BRK0
		0101: BT2O
		0111: ACMPVN3
		其它:保留
		Port B13 功能选择
		0000: GPIO
23:20	PIN13	0001: SPI1MOSI
		0010: PWM0A
		其它:保留

SWM211 系列

		Port B12 功能选择	
		0000: GPIO	
		0001: UARTORX	
19:16	PIN12	0010: PWM0B	
		0011: T2I	
		0100: T2O	
		其它: 保留	
		Port B11 功能选择	
		0000: GPIO	
		0001: UARTOTX	
15:12	PIN11	0010: PWM0BN	
		0011: T1I	
		0100: T1O	
		其它: 保留	
		Port B10 功能选择	
		0000: GPIO	
		0001: SPI1SCLK	
11:8	PIN10	0010: PWM0AN	
		0011: TOI	
		0100: TOO	
		其它: 保留	
		Port B9 功能选择	
		0000: GPIO	
7:4	PIN9	0001: MPURD	
7:4	PINS	0010: UART1RTS	
		0111: ADCO_CH3/OPAOUTO	
		其它: 保留	
		Port B8 功能选择	
		0000: GPIO	
3:0	PIN8	0001: UART1RX	
		0010: OPAVN0	
		其它: 保留	



PORTM_FUNC0

寄存器	偏移	类型	复位值	描述
PORTM_FUNC0	0x80	R/W	0x00	端口 M 功能配置寄存器

31	30	29	28	27	26	25	24	
	PIN15				PIN14			
23	22	21	20	19	18	17	16	
PIN13				PIN12				
15	14	13	12	11	10	9	8	
	PIN11				PIN	V10		
7	6	5	4	3	2	1	0	
PIN9				PIN8				

位域	名称	描述
		Port M7 功能选择
		0000: GPIO
		0001: SPIOSSEL
31:28	PIN7	0010: PWM0A
31.20	11117	0011: PWM1AN
		0100: PWM0AN
		0101: BT10
		其它: 保留
		Port M6 功能选择
		0000: GPIO
		0001: PWM0AN
27:24	PIN6	0010: PWM0A
		0011: BTOO
		0111: OPAVP3
		其它: 保留
		Port M5 功能选择
		0000: GPIO
		0001: PWM1A
23:20	PIN5	0010: PWM1BN
		0011: PWM1AN
		0111: OPAVN3
		其它: 保留

11:8 PIN2 PIN1 O100: PWM1AN O101: PWM1A O110: HALL2 其它: 保留 Port M3 功能选择 O000: GPIO O001: IZCOSCL O010: UARTOTX O011: CANORX O100: PWM1B O101: PWM0A O110: PWM0BN O111: HALL1 其它: 保留 Port M2 功能选择 O000: GPIO O001: PWM1BN O11: HALL0 其它: 保留 Port M2 功能选择 O000: GPIO O001: PWM1BN O11: HALL0 其它: 保留 Port M1 功能选择 O000: GPIO O001: JTAGTMSSWIO/SWDIO O101: JTAGTMSSWIO/SWDIO O101: JTAGTMSSWIO/SWDLK O101: JTAGSWCLK/SWDCLK O101: JTAGSWCLK/SWDCLK				3VVIVIZII 赤ツi
19:16 PIN4 001: I2CSDA 0010: UARTORX 0100: PWM1AN 0101: PWM1A 0110: PWM1A 0110: PMM1A 0110: PMM1A 0110: PMM1A 0110: I2CSCL 0010: UARTOTX 001: I2CSCL 0010: UARTOTX 001: I2CSCL 0010: PWM1B 010: PWM1B 010: PWM1B 010: PWM1B 010: PWM1BN 011: HALL1 其它: 保留 Port M3 功能选择 0000: GPIO 0001: PWM1BN 011: HALL1 其它: 保留 Port M3 功能选择 0000: GPIO 0001: PWM1BN 0010: PWM1BN 0010: PWM1BN 0010: PWM1B 0010: PWM1BN 0010: PWM1BN 0010: PMM1BN 0			Port M4 功能选择	
19:16 PIN4 001: CANOTX 0100: PWM1AN 0101: PWM1A 0110: HALL2 其它: 保留 Port M3 功能选择 0000: GPIO 0001: I2COSCL 0010: UARTITX 0110: PWM1B 0110: PWM1B 0111: HALL1 其它: 保留 Port M2 功能选择 0000: GPIO 0001: CANORX 0100: PWM1BN 0111: HALL1 其它: 保留 Port M2 功能选择 0000: GPIO 0001: PWM1BN 0111: HALL1 其它: 保留 Port M1 功能选择 0000: GPIO 0001: PWM1BN 0011: HALL0 其它: 保留 Port M1 功能选择 0000: GPIO 0001: JTAGTMSSWIO/SWDIO 0010: JTAGTMSSWIO/SWDIO 0011: JTAGSWCLK/SWDCLK 0010: UARTITX 0010: JTAGSWCLK/SWDCLK 0010: UARTITX 0011: JTAGSWCLK/SWDCLK 0010: UARTITX 0011: JTAGSWCLK/SWDCLK 0010: JTAII 0010: TII 0011: ADCO_CH11			0000: GPIO	
19:16 PIN4 O011: CANOTX O100: PWM1AN O110: HALL2 其它: 保留 Port M3 功能选择 O000: GPIO O011: CANORX O100: PWM1B O101: PWM1B O111: HALL1 其它: 保留 PIN3 O111: CANORX O100: PWM1B O101: PWM1B O111: HALL1 其它: 保留 Port M2 功能选择 O000: GPIO O01: PWM1B O110: PWM1BN O110: PWM1B O111: HALL0 其它: 保留 Port M2 功能选择 O000: GPIO O01: JTAGTMSSWIIO/SWDIO O010: JTAGSWCLI/SWDCLK O010: JTAGSWCLI/SWDCLK O010: UARTITX O011: PWM_CLKO O110: TIO O111: ADCO_CH11			0001: I2COSDA	
0100: PWM1AN 0101: PWM1A 0101: PWM1A 0110: HALL2 其它: 保留			0010: UARTORX	
D101: PWM1A D110: HALL2 其它: 保留	19:16	PIN4	0011: CANOTX	
11:8 PIN2 PIN3 PIN2 PIN3 PIN3 PIN3 PIN3 PIN3 PIN3 PIN3 PIN3			0100: PWM1AN	
其它: 保留 Port M3 功能选择 0000: GPIO 0001: I2COSCL 0010: UARTOTX 0111: CANORX 0100: PWM1B 0101: PWM1BN 0111: HALL1 其它: 保留 Port M2 功能选择 0000: GPIO 0001: PWM1BN 0011: HALL0 其它: 保留 Port M1 功能选择 0000: GPIO 0001: PWM1B 0011: HALL0 其它: 保留 Port M1 功能选择 0000: GPIO 0001: BT3O 其它: 保留 Port M1 功能选择 0000: GPIO 0011: BT3O 其它: 保留 Port M0 功能选择 0000: GPIO 0011: BT3O 其它: 保留 Port M0 功能选择 0000: GPIO 0011: BT3O 其它: 保留			0101: PWM1A	
Port M3 功能选择 0000: GPIO 0001: I2COSCL 0010: UARTOTX 0011: CANORX 0100: PWM1B 0101: PWMOA 0110: PWMDA 0110: PWMBN 0111: HALL1 其它: 保留 Port M2 功能选择 0000: GPIO 0001: PWM1B 0010: PWM1B 0010: PWM1B 0010: PWM1B 0011: HALL0 其它: 保留 Port M1 功能选择 0000: GPIO 0001: JTAGTMSSWIO/SWDIO 0010: UARTITX 0011: BT3O 其它: 保留 Port M0 功能选择 0000: GPIO 0001: JTAGTMSSWIO/SWDIO 0010: UARTITX 0011: BT3O 其它: 保留 Port M0 功能选择 0000: GPIO 0001: JTAGSWCLK/SWDCLK 0010: UARTITX 0011: ADCO_CH11			0110: HALL2	
15:12 PIN3			其它: 保留	
15:12 PIN3			Port M3 功能选择	
15:12 PIN3			0000: GPIO	
15:12 PIN3			0001: I2C0SCL	
15:12 PIN3 0100: PWM1B 0101: PWM0A 0110: PWM1BN 0111: HALL1 其它: 保留 Port M2 功能选择 0000: GPIO 0001: PWM1B 0011: HALL0 其它: 保留 Port M1 功能选择 0000: GPIO 0001: JTAGSWCLK/SWDCLK 0010: UARTITX 011: RM30 PIN0 011: PMM_CLKO 0100: TII 0101: T10 0111: ADCO_CH11			0010: UARTOTX	
0100: PWM1B 0101: PWM0A 0110: PWM1BN 0111: HALL1 其它: 保留 Port M2 功能选择 0000: GPIO 0001: PWM1BN 0010: PWM1B 0011: HALLO 其它: 保留 Port M1 功能选择 0000: GPIO 0001: JTAGTMSSWIO/SWDIO 0010: UART1RX 0011: BT3O 其它: 保留 Port M0 功能选择 0000: GPIO 0001: JTAGSWCLK/SWDCLK 0010: UART1TX 0011: JTAGSWCLK/SWDCLK 0010: UART1TX 0011: PWM_CLKO 0101: TIO 0111: ADCO_CH11	15.13	DINIS	0011: CANORX	
0110: PWM1BN 0111: HALL1 其它: 保留 Port M2 功能选择 0000: GPIO 0001: PWM1BN 0010: PWM1B 0011: HALL0 其它: 保留 Port M1 功能选择 0000: GPIO 0001: JTAGTMSSWIO/SWDIO 0010: UART1TX 0011: BT3O 其它: 保留 Port M0 功能选择 0000: GPIO 0001: JTAGSWCLK/SWDCLK 0010: JTAGSWCLK/SWDCLK 0010: JTAGSWCLK/SWDCLK 0010: JTAGSWCLK/SWDCLK 0010: JTAGSWCLK/SWDCLK 0010: UART1TX	15:12	PINS	0100: PWM1B	
Dill: HALL1 其它: 保留			0101: PWM0A	
其它: 保留 Port M2 功能选择 0000: GPIO 0001: PWM1BN 0010: PWM1B 0011: HALLO 其它: 保留 Port M1 功能选择 0000: GPIO 0001: JTAGTMSSWIO/SWDIO 0010: UART1RX 0011: BT3O 其它: 保留 Port M0 功能选择 0000: GPIO 0001: JTAGSWCLK/SWDCLK 0010: UART1TX 0011: BT3O 其它: 保留			0110: PWM1BN	
Port M2 功能选择 0000: GPIO 0001: PWM1BN 0010: PWM1B 0011: HALLO 其它: 保留 Port M1 功能选择 0000: GPIO 0001: JTAGTMSSWIO/SWDIO 0010: UART1RX 0011: BT3O 其它: 保留 Port M0 功能选择 0000: GPIO 0001: JTAGTMSSWIO/SWDIO 0010: UART1RX 0011: BT3O 其它: 保留 Port M0 功能选择 0000: GPIO 0001: JTAGSWCLK/SWDCLK 0010: UART1TX 0011: PWM_CLKO 0100: TII 0101: TIO 0111: ADCO_CH11			0111: HALL1	
11:8 PIN2			其它: 保留	
11:8 PIN2 0001: PWM1BN 0010: PWM1B 0011: HALL0 其它: 保留 Port M1 功能选择 0000: GPIO 0001: JTAGTMSSWIO/SWDIO 0010: UART1RX 0011: BT3O 其它: 保留 Port M0 功能选择 0000: GPIO 0001: JTAGSWCLK/SWDCLK 0010: UART1TX 0011: PWM_CLKO 0100: T1I 0101: T1O 0111: ADCO_CH11			Port M2 功能选择	
11:8 PIN2 0010: PWM1B 0011: HALL0 其它: 保留 Port M1 功能选择 0000: GPIO 0001: JTAGTMSSWIO/SWDIO 0010: UART1RX 0011: BT3O 其它: 保留 Port M0 功能选择 0000: GPIO 0001: JTAGSWCLK/SWDCLK 0010: UART1TX 0011: PWM_CLKO 0100: T1I 0101: T1O 0111: ADCO_CH11			0000: GPIO	
0010: PWM1B 0011: HALL0 其它: 保留 Port M1 功能选择 0000: GPIO 0001: JTAGTMSSWIO/SWDIO 0010: UART1RX 0011: BT3O 其它: 保留 Port M0 功能选择 0000: GPIO 0001: JTAGSWCLK/SWDCLK 0010: UART1TX 0011: PWM_CLKO 0100: T1 0101: T1O 0111: ADCO_CH11	11.0	DINO	0001: PWM1BN	
其它: 保留 Port M1 功能选择 0000: GPIO 0001: JTAGTMSSWIO/SWDIO 0010: UART1RX 0011: BT3O 其它: 保留 Port M0 功能选择 0000: GPIO 0001: JTAGSWCLK/SWDCLK 0010: UART1TX 0011: PWM_CLKO 0100: T1I 0101: T1O 0111: ADCO_CH11	11.0	FIINZ	0010: PWM1B	
Port M1 功能选择 0000: GPIO 0001: JTAGTMSSWIO/SWDIO 0010: UART1RX 0011: BT3O 其它: 保留 Port M0 功能选择 0000: GPIO 0001: JTAGSWCLK/SWDCLK 0010: UART1TX 0011: PWM_CLKO 0100: T1I 0101: T1O 0111: ADCO_CH11			0011: HALLO	
7:4 PIN1 0000: GPIO 0001: JTAGTMSSWIO/SWDIO 0010: UART1RX 0011: BT3O 其它: 保留 Port M0 功能选择 0000: GPIO 0001: JTAGSWCLK/SWDCLK 0010: UART1TX 0011: PWM_CLKO 0100: T1I 0101: T1O 0111: ADCO_CH11			其它: 保留	
7:4 PIN1 0001: JTAGTMSSWIO/SWDIO 0010: UART1RX 0011: BT3O 其它: 保留 Port M0 功能选择 0000: GPIO 0001: JTAGSWCLK/SWDCLK 0010: UART1TX 0010: UART1TX 0100: T1I 0101: T1O 0111: ADCO_CH11			Port M1 功能选择	
7:4 PIN1 0010: UART1RX 0011: BT3O 其它: 保留 Port M0 功能选择 0000: GPIO 0001: JTAGSWCLK/SWDCLK 0010: UART1TX 0010: T1I 0101: T1O 0111: ADCO_CH11			0000: GPIO	
0010: UART1RX 0011: BT3O 其它: 保留 Port M0 功能选择 0000: GPIO 0001: JTAGSWCLK/SWDCLK 0010: UART1TX 0010: T1I 0101: T1O 0111: ADCO_CH11	7.4	DINI1	0001: JTAGTMSSWIO/SWDIO	
其它:保留 Port M0 功能选择 0000: GPIO 0001: JTAGSWCLK/SWDCLK 0010: UART1TX 0011: PWM_CLKO 0100: T1I 0101: T1O 0111: ADCO_CH11	,. .	11111	0010: UART1RX	
Port M0 功能选择 0000: GPIO 0001: JTAGSWCLK/SWDCLK 0010: UART1TX 0011: PWM_CLK0 0100: T1I 0101: T1O 0111: ADCO_CH11			0011: BT3O	
0000: GPIO 0001: JTAGSWCLK/SWDCLK 0010: UART1TX 3:0 PINO 0011: PWM_CLKO 0100: T1I 0101: T1O 0111: ADCO_CH11			其它: 保留	
0001: JTAGSWCLK/SWDCLK 0010: UART1TX 0011: PWM_CLK0 0100: T1I 0101: T1O 0111: ADCO_CH11			Port M0 功能选择	
0010: UART1TX 0011: PWM_CLK0 0100: T1I 0101: T1O 0111: ADCO_CH11			0000: GPIO	
0011: PWM_CLK0 0100: T1I 0101: T1O 0111: ADCO_CH11			0001: JTAGSWCLK/SWDCLK	
0100: T1I 0101: T1O 0111: ADCO_CH11			0010: UART1TX	
0101: T10 0111: ADC0_CH11	3:0	PINO	0011: PWM_CLK0	
0111: ADC0_CH11			0100: T1I	
			0101: T1O	
其它: 保留			0111: ADC0_CH11	
			其它: 保留	

PORTM_FUNC1

寄存器	偏移	类型	复位值	描述
PORTM_FUNC1	0x84	R/W	0x00	端口 M 功能配置寄存器 1

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
		-			PIN	110	
7	6	5	4	3	2	1	0
	PII	N9			PII	V8	

位域	名称	描述
31:12	-	-
		Port M10 功能选择
11:8	PIN10	0000: GPIO
11.0	PINIO	0001: SPIOMISO
		其它: 保留
		Port M9 功能选择
		0000: GPIO
		0001: UPDN
		0010: SPIOMOSI
7:4	PIN9	0011: PWM0B
		0100: T2I
		0101: T2O
		0111: ADC0_CH10/OPAOUT3
		其它: 保留
		Port M8 功能选择
		0000: GPIO
		0001: SPIOSCLK
3:0	PIN8	0010: CANORX
5.0		0011: PWM0BN
		0100: TOI
		0101: T00
		其它: 保留

PORTA 端口上拉功能寄存器 PULLU_A

寄存器	偏移	类型	复位值	描述
PULLU_A	0x00	R/W	0x00	端口 A 上拉使能控制寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	
	17	13	12	11	10	9	8
PIN15	PIN14	PIN13	PIN12	PIN11	PIN10	PIN9	PIN8

位域	名称	描述
31:16	-	-
15	PIN15	PIN15 上拉电阻使能
15	PINTS	0: 禁能 1: 使能
14	PIN14	PIN14 上拉电阻使能
14	PIN14	0: 禁能 1: 使能
13	PIN13	PIN13 上拉电阻使能
13	PINIS	0: 禁能 1: 使能
12	PIN12	PIN12 上拉电阻使能
12	PINIZ	0: 禁能 1: 使能
11	PIN11	PIN11 上拉电阻使能
11		0: 禁能 1: 使能
10	DINI10	PIN10 上拉电阻使能
10	PIN10	0: 禁能 1: 使能
	PIN9	PIN9 上拉电阻使能
9	PIN9	0: 禁能 1: 使能
8	PIN8	PIN8 上拉电阻使能
0	FIIVO	0: 禁能 1: 使能
7	PIN7	PIN7 上拉电阻使能
,	PIN7	0: 禁能 1: 使能
6	PIN6	PIN6 上拉电阻使能
b	PINO	0: 禁能 1: 使能
5	PIN5	PIN5 上拉电阻使能
	CIN3	0: 禁能 1: 使能
4	PIN4	PIN4 上拉电阻使能
+	F11V4	0: 禁能 1: 使能

SWM211 系列

3 PIN3		PIN3 上拉电阻使能
3	PINS	0: 禁能 1: 使能
2	PIN2	PIN2 上拉电阻使能
2	PINZ	0: 禁能 1: 使能
1	PIN1	PIN1 上拉电阻使能
		0: 禁能 1: 使能
0		PINO 上拉电阻使能
<u> </u>	PINO	0: 禁能 1: 使能

PORTB 端口上拉功能寄存器 PULLU_B

寄存器	偏移	类型	复位值	描述
PULLU_B	0x10	R/W	0x00	端口 B 上拉使能控制寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
15 PIN15	14 PIN14	13 PIN13	12 PIN12	11 PIN11	10 PIN10	9 PIN9	8 PIN8

位域	名称	描述
31:16	-	-
15	PIN15	PIN15 上拉电阻使能
15	PINTS	0: 禁能 1: 使能
14	PIN14	PIN14 上拉电阻使能
14	PINT4	0: 禁能 1: 使能
13	PIN13	PIN13 上拉电阻使能
13	PINIS	0: 禁能 1: 使能
12	PIN12	PIN12 上拉电阻使能
12	PINIZ	0: 禁能 1: 使能
11	PIN11	PIN11 上拉电阻使能
11		0: 禁能 1: 使能
10	DINI10	PIN10 上拉电阻使能
10	PIN10	0: 禁能 1: 使能
	PIN9	PIN9 上拉电阻使能
9	PIN9	0: 禁能 1: 使能
8	PIN8	PIN8 上拉电阻使能
0	FIIVO	0: 禁能 1: 使能
7	PIN7	PIN7 上拉电阻使能
,	PIN7	0: 禁能 1: 使能
6	PIN6	PIN6 上拉电阻使能
b	PINO	0: 禁能 1: 使能
5	PIN5	PIN5 上拉电阻使能
	CIN3	0: 禁能 1: 使能
4	PIN4	PIN4 上拉电阻使能
+	F11V4	0: 禁能 1: 使能

SWM211 <u>系列</u>

3 PIN		PIN3 上拉电阻使能
3	PINS	0: 禁能 1: 使能
2	PIN2	PIN2 上拉电阻使能
2	PINZ	0: 禁能 1: 使能
1	PIN1	PIN1 上拉电阻使能
		0: 禁能 1: 使能
0	PINO	PINO 上拉电阻使能
		0: 禁能 1: 使能

PORTM 端口上拉功能寄存器 PULLU_M

寄存器	偏移	类型	复位值	描述
PULLU_M	0x80	R/W	0x00	端口 M 上拉使能控制寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
-							
		-			PIN10	PIN9	PIN8
7	6	5	4	3	PIN10 2	PIN9	PIN8

位域	名称	描述
31:11	-	-
10	PIN10	PIN10 上拉电阻使能
10	PINIO	0: 禁能 1: 使能
9	PIN9	PIN9 上拉电阻使能
	FIIVS	0: 禁能 1: 使能
8	PIN8	PIN8 上拉电阻使能
	IIVO	0: 禁能 1: 使能
7	PIN7	PIN7 上拉电阻使能
,	FIIN	0: 禁能 1: 使能
6	PIN6	PIN6 上拉电阻使能
	i iivo	0: 禁能 1: 使能
5	PIN5	PIN5 上拉电阻使能
	i iivs	0: 禁能 1: 使能
4	PIN4	PIN4 上拉电阻使能
	1 1114	0: 禁能 1: 使能
3	PIN3	PIN3 上拉电阻使能
	i iivs	0: 禁能 1: 使能
2	PIN2	PIN2 上拉电阻使能
_	11112	0: 禁能 1: 使能
1	PIN1	PIN1 上拉电阻使能
_	1 11/1	0: 禁能 1: 使能
0	PINO	PINO 上拉电阻使能
	1 1140	0: 禁能 1: 使能

PORTA 端口下拉功能寄存器 PULLD_A

寄存器	偏移	类型	复位值	描述
PULLD_A	0x100	R/W	0x00	端口 A 下拉使能控制寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15						_	
13	14	13	12	11	10	9	8
PIN15	14 PIN14	13 PIN13	12 PIN12	PIN11	10 PIN10	9 PIN9	8 PIN8

位域	名称	描述
31:16	-	-
15	PIN15	PIN15 下拉电阻使能
15	PINIS	0: 禁能 1: 使能
14	PIN14	PIN14 下拉电阻使能
14	PIIN14	0: 禁能 1: 使能
13	PIN13	PIN13 下拉电阻使能
13	INIS	0: 禁能 1: 使能
12	PIN12	PIN12 下拉电阻使能
12	FINIZ	0: 禁能 1: 使能
11	PIN11	PIN11 下拉电阻使能
	1 11411	0: 禁能 1: 使能
10	PIN10	PIN10 下拉电阻使能
10	FINIO	0: 禁能 1: 使能
9	PIN9	PIN9 下拉电阻使能
3	FINS	0: 禁能 1: 使能
8	PIN8	PIN8 下拉电阻使能
	I IIVO	0: 禁能 1: 使能
7	PIN7	PIN7 下拉电阻使能
	1 1147	0: 禁能 1: 使能
6	PIN6	PIN6 下拉电阻使能
	1 1140	0: 禁能 1: 使能
5	PIN5	PIN5 下拉电阻使能
,	FINS	0: 禁能 1: 使能
4	PIN4	PIN4 下拉电阻使能
	FIIN4	0: 禁能 1: 使能

SWM211 系列

3	PIN3	PIN3 下拉电阻使能
3	PINS	0: 禁能 1: 使能
2	PIN2	PIN2 下拉电阻使能
2	PINZ	0: 禁能 1: 使能
1	PIN1	PIN1 下拉电阻使能
		0: 禁能 1: 使能
0	PINO	PINO 下拉电阻使能
<u> </u>		0: 禁能 1: 使能

PORTB 端口下拉功能寄存器 PULLD_B

寄存器	偏移	类型	复位值	描述
PULLD_B	0x110	R/W	0x00	端口 B 下拉使能控制寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	
	17	13	12	11	10	9	8
PIN15	PIN14	PIN13	PIN12	PIN11	PIN10	PIN9	PIN8

位域	名称	描述
31:16	-	-
15	PIN15	PIN15 下拉电阻使能
15	PINIS	0: 禁能 1: 使能
14	PIN14	PIN14 下拉电阻使能
14	PIIN14	0: 禁能 1: 使能
13	PIN13	PIN13 下拉电阻使能
13	INIS	0: 禁能 1: 使能
12	PIN12	PIN12 下拉电阻使能
12	FINIZ	0: 禁能 1: 使能
11	PIN11	PIN11 下拉电阻使能
	1 11411	0: 禁能 1: 使能
10	PIN10	PIN10 下拉电阻使能
10	FINIO	0: 禁能 1: 使能
9	PIN9	PIN9 下拉电阻使能
3	FINS	0: 禁能 1: 使能
8	PIN8	PIN8 下拉电阻使能
	I IIVO	0: 禁能 1: 使能
7	PIN7	PIN7 下拉电阻使能
	1 1147	0: 禁能 1: 使能
6	PIN6	PIN6 下拉电阻使能
	1 1140	0: 禁能 1: 使能
5	PIN5	PIN5 下拉电阻使能
,	FINS	0: 禁能 1: 使能
4	PIN4	PIN4 下拉电阻使能
	FIIN4	0: 禁能 1: 使能

SWM211 系列

3		PIN3 下拉电阻使能
3	PIN3	0: 禁能 1: 使能
2	PIN2	PIN2 下拉电阻使能
2	PINZ	0: 禁能 1: 使能
1	PIN1	PIN1 下拉电阻使能
		0: 禁能 1: 使能
	PINO	PINO 下拉电阻使能
U	FINU	0: 禁能 1: 使能

PORTM 端口下拉功能寄存器 PULLD_M

寄存器	偏移	类型	复位值	描述
PULLD_M	0x180	R/W	0x00	端口 M 下拉使能控制寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
	-					PIN9	PIN8
7	6	5	4	3	2	1	0

位域	名称	描述
31:11	-	-
10	PIN10	PIN10 下拉电阻使能
10	PINIO	0: 禁能 1: 使能
9	PIN9	PIN9 下拉电阻使能
5	FINS	0: 禁能 1: 使能
8	PIN8	PIN8 下拉电阻使能
0	FINO	0: 禁能 1: 使能
7	PIN7	PIN7 下拉电阻使能
,	F11V7	0: 禁能 1: 使能
6	PIN6	PIN6 下拉电阻使能
	1110	0: 禁能 1: 使能
5	PIN5	PIN5 下拉电阻使能
	FINS	0: 禁能 1: 使能
4	PIN4	PIN4 下拉电阻使能
4	F11V4	0: 禁能 1: 使能
3	PIN3	PIN3 下拉电阻使能
3	FINS	0: 禁能 1: 使能
2	PIN2	PIN2 下拉电阻使能
	FIIVZ	0: 禁能 1: 使能
1	PIN1	PIN1 下拉电阻使能
1	1111	0: 禁能 1: 使能
•	PINO	PINO 下拉电阻使能
	FINO	0: 禁能 1: 使能

PORTA 端口输入使能功能寄存器 INEN_A

寄存器	偏移	类型	复位值	描述
INEN_A	0x200	R/W	0x00	端口 A 输入使能控制寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	
	17	13	12	11	10	9	8
PIN15	PIN14	PIN13	PIN12	PIN11	PIN10	PIN9	PIN8

位域	名称	描述
31:16	-	-
15	PIN15	PIN15 输入使能
15	PINIS	0: 禁能 1: 使能
14	PIN14	PIN14 输入使能
14	PINI4	0: 禁能 1: 使能
13	PIN13	PIN13 输入使能
13	PINIS	0: 禁能 1: 使能
12	PIN12	PIN12 输入使能
12	PINIZ	0: 禁能 1: 使能
11	PIN11	PIN11 输入使能
11	PINII	0: 禁能 1: 使能
10	PIN10	PIN10 输入使能
10	PINIO	0: 禁能 1: 使能
9	PIN9	PIN9 输入使能
9	PINS	0: 禁能 1: 使能
8	PIN8	PIN8 输入使能
0	FINO	0: 禁能 1: 使能
7	PIN7	PIN7 输入使能
,	PIN7	0: 禁能 1: 使能
6	PIN6	PIN6 输入使能
0	PINO	0: 禁能 1: 使能
5	PIN5	PIN5 输入使能
5	PINS	0: 禁能 1: 使能
4	PIN4	PIN4 输入使能
4	PIN4	0: 禁能 1: 使能

SWM211 <u>系列</u>

2	PIN3	PIN3 输入使能
3		0: 禁能 1: 使能
2	PIN2	PIN2 输入使能
2	PINZ	0: 禁能 1: 使能
1	PIN1	PIN1 输入使能
	FINI	0: 禁能 1: 使能
•	PINO	PINO 输入使能
0	FINO	0: 禁能 1: 使能

PORTB 端口输入使能功能寄存器 INEN_B

寄存器	偏移	类型	复位值	描述
INEN_B	0x210	R/W	0x00	端口 B 输入使能控制寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
15 PIN15	14 PIN14	13 PIN13	12 PIN12	11 PIN11	10 PIN10	9 PIN9	8 PIN8

位域	名称	描述
31:16	-	-
15	PIN15	PIN15 输入使能
15	PINTS	0: 禁能 1: 使能
14	PIN14	PIN14 输入使能
14	PIIN14	0: 禁能 1: 使能
13	PIN13	PIN13 输入使能
13	FINIS	0: 禁能 1: 使能
12	PIN12	PIN12 输入使能
12	FIINIZ	0: 禁能 1: 使能
11	PIN11	PIN11 输入使能
	FINII	0: 禁能 1: 使能
10	PIN10	PIN10 输入使能
10	FINIO	0: 禁能 1: 使能
9	PIN9	PIN9 输入使能
9	FINS	0: 禁能 1: 使能
8	PIN8	PIN8 输入使能
		0: 禁能 1: 使能
7	PIN7	PIN7 输入使能
,	PIIV/	0: 禁能 1: 使能
6	PIN6	PIN6 输入使能
	FINO	0: 禁能 1: 使能
5	PIN5	PIN5 输入使能
	FIND	0: 禁能 1: 使能
4	PIN4	PIN4 输入使能
	IF 11144	0: 禁能 1: 使能

SWM211 <u>系列</u>

2	PIN3	PIN3 输入使能
3	PINS	0: 禁能 1: 使能
2	PIN2	PIN2 输入使能
2	PINZ	0: 禁能 1: 使能
1	PIN1	PIN1 输入使能
	FINI	0: 禁能 1: 使能
0	PINO	PINO 输入使能
	FINO	0: 禁能 1: 使能

PORTM 端口输入使能功能寄存器 INEN_M

寄存器	偏移	类型	复位值	描述
INEN_M	0x280	R/W	0x00	端口 M 输入使能控制寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
		-			PIN10	PIN9	PIN8
7	6	5	4	3	2	1	0

位域	名称	描述
31:11	-	-
10	PIN10	PIN10 输入使能
10	PINIO	0: 禁能 1: 使能
9	PIN9	PIN9 输入使能
J	FINS	0: 禁能 1: 使能
8	PIN8	PIN8 输入使能
	1 1140	0: 禁能 1: 使能
7	PIN7	PIN7 输入使能
	11117	0: 禁能 1: 使能
6	PIN6	PIN6 输入使能
	1 1140	0: 禁能 1: 使能
5	PIN5	PIN5 输入使能
	11113	0: 禁能 1: 使能
4	PIN4	PIN4 输入使能
•	FINA	0: 禁能 1: 使能
3	PIN3	PIN3 输入使能
	11113	0: 禁能 1: 使能
2	PIN2	PIN2 输入使能
_	11112	0: 禁能 1: 使能
1	PIN1	PIN1 输入使能
	1117	0: 禁能 1: 使能
0	PINO	PINO 输入使能
	1110	0: 禁能 1: 使能

PORTA 端口开漏功能寄存器 OPEND_A

寄存器	偏移	类型	复位值	描述
OPEND_A	0x300	R/W	0x00	端口 A 开漏使能控制寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15						_	
13	14	13	12	11	10	9	8
PIN15	14 PIN14	13 PIN13	12 PIN12	PIN11	10 PIN10	9 PIN9	8 PIN8

位域	名称	描述
31:16	-	-
		PIN15 开漏使能
15	PIN15	0: 推挽模式
		1: 开漏模式
		PIN14 开漏使能
14	PIN14	0: 推挽模式
		1: 开漏模式
		PIN13 开漏使能
13	PIN13	0: 推挽模式
		1: 开漏模式
		PIN12 开漏使能
12	PIN12	0: 推挽模式
		1: 开漏模式
		PIN11 开漏使能
11	PIN11	0: 推挽模式
		1: 开漏模式
		PIN10 开漏使能
10	PIN10	0: 推挽模式
		1: 开漏模式
		PIN9 开漏使能
9	PIN9	0: 推挽模式
		1: 开漏模式
		PIN8 开漏使能
8	PIN8	0: 推挽模式
		1: 开漏模式

	T'P/t-//	
	PIN7 开漏使能	
PIN7	0: 推挽模式	
	1: 开漏模式	
	PIN6 开漏使能	
PIN6	0: 推挽模式	
	1: 开漏模式	
	PIN5 开漏使能	
PIN5	0: 推挽模式	
	1: 开漏模式	
	PIN4 开漏使能	
PIN4	0: 推挽模式	
	1: 开漏模式	
	PIN3 开漏使能	
PIN3	0: 推挽模式	
	1: 开漏模式	
	PIN2 开漏使能	
PIN2	0: 推挽模式	
	1: 开漏模式	
	PIN1 开漏使能	
PIN1	0: 推挽模式	
	1: 开漏模式	
	PINO 开漏使能	
PIN0	0: 推挽模式	
	1: 开漏模式	
	PIN6 PIN5 PIN4 PIN3 PIN2 PIN1	1: 开漏模式 PIN6 0: 推挽模式 1: 开漏模式 PIN5 开漏使能 0: 推挽模式 1: 开漏模式 PIN4 开漏使能 0: 推挽模式 1: 开漏模式 PIN3

PORTB 端口开漏功能寄存器 OPEND_B

寄存器	偏移	类型	复位值	描述
OPEND_B	0x310	R/W	0x00	端口 B 开漏使能控制寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15						_	
13	14	13	12	11	10	9	8
PIN15	14 PIN14	13 PIN13	12 PIN12	PIN11	10 PIN10	9 PIN9	8 PIN8

位域	名称	描述
31:16	-	-
		PIN15 开漏使能
15	PIN15	0: 推挽模式
		1: 开漏模式
		PIN14 开漏使能
14	PIN14	0: 推挽模式
		1: 开漏模式
		PIN13 开漏使能
13	PIN13	0: 推挽模式
		1: 开漏模式
		PIN12 开漏使能
12	PIN12	0: 推挽模式
		1: 开漏模式
		PIN11 开漏使能
11	PIN11	0: 推挽模式
		1: 开漏模式
		PIN10 开漏使能
10	PIN10	0: 推挽模式
		1: 开漏模式
		PIN9 开漏使能
9	PIN9	0: 推挽模式
		1: 开漏模式
		PIN8 开漏使能
8	PIN8	0: 推挽模式
		1: 开漏模式

			011111111111111111111111111111111111111
		PIN7 开漏使能	
7	PIN7	0: 推挽模式	
		1: 开漏模式	
		PIN6 开漏使能	
6	PIN6	0: 推挽模式	
		1: 开漏模式	
		PIN5 开漏使能	
5	PIN5	0: 推挽模式	
		1: 开漏模式	
		PIN4 开漏使能	
4	PIN4	0: 推挽模式	
		1: 开漏模式	
		PIN3 开漏使能	
3	PIN3	0: 推挽模式	
		1: 开漏模式	
		PIN2 开漏使能	
2	PIN2	0: 推挽模式	
		1: 开漏模式	
		PIN1 开漏使能	
1	PIN1	0: 推挽模式	
		1: 开漏模式	
		PINO 开漏使能	
О	PIN0	0: 推挽模式	
		1: 开漏模式	

PORTM 端口开漏功能寄存器 OPEND_M

寄存器	偏移	类型	复位值	描述
OPEND_M	0x380	R/W	0x00	端口 M 开漏使能控制寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
		-			PIN10	PIN9	PIN8
7	6	5	4	3	2	1	0

位域	名称	描述
31:11	-	-
		PIN10 开漏使能
10	PIN10	0: 推挽模式
		1: 开漏模式
		PIN9 开漏使能
9	PIN9	0: 推挽模式
		1: 开漏模式
		PIN8 开漏使能
8	PIN8	0: 推挽模式
		1: 开漏模式
		PIN7 开漏使能
7	PIN7	0: 推挽模式
		1: 开漏模式
		PIN6 开漏使能
6	PIN6	0: 推挽模式
		1: 开漏模式
		PIN5 开漏使能
5	PIN5	0: 推挽模式
		1: 开漏模式
		PIN4 开漏使能
4	PIN4	0: 推挽模式
		1: 开漏模式
		PIN3 开漏使能
3	PIN3	0: 推挽模式
		1: 开漏模式

		PIN2 开漏使能
2	PIN2	0: 推挽模式
		1: 开漏模式
		PIN1 开漏使能
1	PIN1	0: 推挽模式
		1: 开漏模式
		PINO 开漏使能
0	PIN0	0: 推挽模式
		1: 开漏模式

6.7 通用 I/O (GPIO)

6.7.1 概述

通用输入输出模块(GPIO)主要功能包括数据控制、中断控制等功能。

SWM211 系列所有型号 GPIO 操作均相同,使用前需使能对应 GPIO 模块时钟。

6.7.2 特性

- 最高 44 个独立 IO。
- 每个 IO 均支持位带功能
- 每个 IO 均可触发中断。
- 中断触发条件可配置,支持电平触发/边沿触发。
 - 电平触发支持高电平/低电平
 - 边沿触发中断可配置为上升沿/下降沿/双边沿触发。

6.7.3 功能描述

数据控制

除 SWD 引脚与 ISP 引脚外,所有引脚上电后默认状态均为 GPIO 浮空输入(DIR = 0)。SWD 引脚可在加密章节进行修改,IS 引脚默认下拉使能,保证浮空状态不会进入 ISP 模式。

GPIO 方向寄存器(DIRx)用来将每个独立的管脚配置为输入模式或者输出模式:

- 当数据方向设为 0 时,GPIO 对应引脚配置为输入 通过读取相应数据寄存器(IDRx)对应位或对应 DATAPINx 寄存器获取指定 GPIO 端口 当前状态值
- 当数据方向设为 1 时,GPIO 对应引脚配置为输出 通过向对应端口数据寄存器(ODRx)对应位或对应 DATAPINx 寄存器写入值改变指定 引脚输出,0 输出低电平,1 输出高电平。DATAPINx 寄存器可以直接控制对应端口, 对其他端口无影响,无需经过读后写。

GPIOA/GPIOM 端口为 AHB IO, 挂载于 AHB 总线,对于读取和写入操作,均为命令发出后的 1 个周期完成。

中断控制与清除

可根据需求将 GPIO 端口对应引脚配置为中断模式,并通过相关寄存器配置中断极性及触发方式。触发方式分为边沿触发和电平触发两种模式。

- 对于边沿触发中断,可以设置为上升沿触发,下降沿触发或双边沿触发。中断发生后,标志位具备保持特性,必须通过软件对中断标志位进行清除
- 对于电平触发中断,当外部引脚输入为指定电平时,中断发生。当电平翻转后,中断信号消失,无需软件进行清除。使用电平触发中断,需保证外部信号源保持电平稳定,以便有效中断电平能被端口识别

使用以下寄存器来对产生中断触发方式和极性进行定义:

- GPIO 中断触发条件寄存器(INTLVLTRG),用于配置电平触发或边沿触发
- GPIO 中断触发极性寄存器(INTRISEEN),用于配置电平或边沿触发极性
- GPIO 中断边沿触发配置寄存器(INTBE),选择为边沿触发后,用于配置单边沿触发或 双边沿触发

通过 GPIO 中断使能寄存器(INTEN)可以使能或者禁止相应端口对应位中断,GPIO 原始中断状态(INTRAWSTAUS)不受使能位影响。当产生中断时,可以在 GPIO 原始中断状态(RAWINTSTAUS)获取中断信号的状态。当中断使能寄存器(INTEN)对应位为 1 时,中断状态(INTSTAUS)寄存器可读取到对应中断信号,且中断信号会进入中断配置模块及 NVIC 模块,执行中断程序。

通过写 1 到 GPIO 中断清除寄存器(INTCLR)指定位可以清除相应位中断。

6.7.4 寄存器映射

名称	偏移	类型	复位值	描述
GPIOA	BASE:	0x40004800		
GPIOB	BASE:	0x40040800		
GPIOM	BASE:	0x40004000		
ODR	0x00	R/W	0x00	GPIO 写数据寄存器
DIR	0x04	R/W	0x00	GPIO 方向寄存器
INTLVLTRG	0x08	R/W	0x00	GPIO 中断触发条件
INTBE	0x0c	R/W	0x00	GPIO 中断沿触发配置寄存器
INTRISEEN	0x10	R/W	0x00	GPIO 中断触发极性
INTEN	0x14	R/W	0x00	GPIO 中断使能
INTRAWSTAT	0x18	R/W	0x00	GPIO 中断原始状态
INTSTAT	0x1c	R/W	0x00	GPIO 中断状态
INTCLR	0x20	R/W	0x00	GPIO 中断清除
IDR	0x30	R/W	0x00	GPIO 读数据寄存器
DATAPIN0	0x40	R/W	0x00	GPIO PINO 数据寄存器
DATAPIN1	0x44	R/W	0x00	GPIO PIN1 数据寄存器
DATAPIN2	0x48	R/W	0x00	GPIO PIN2 数据寄存器
DATAPIN3	0x4c	R/W	0x00	GPIO PIN3 数据寄存器
DATAPIN4	0x50	R/W	0x00	GPIO PIN4 数据寄存器
DATAPIN5	0x54	R/W	0x00	GPIO PIN5 数据寄存器
DATAPIN6	0x58	R/W	0x00	GPIO PIN6 数据寄存器
DATAPIN7	0x5c	R/W	0x00	GPIO PIN7 数据寄存器
DATAPIN8	0x60	R/W	0x00	GPIO PIN8 数据寄存器
DATAPIN9	0x64	R/W	0x00	GPIO PIN9 数据寄存器
DATAPIN10	0x68	R/W	0x00	GPIO PIN10 数据寄存器
DATAPIN11	0x6c	R/W	0x00	GPIO PIN11 数据寄存器
DATAPIN12	0x70	R/W	0x00	GPIO PIN12 数据寄存器
DATAPIN13	0x74	R/W	0x00	GPIO PIN13 数据寄存器
DATAPIN14	0x78	R/W	0x00	GPIO PIN14 数据寄存器
DATAPIN15	0x7c	R/W	0x00	GPIO PIN15 数据寄存器

6.7.5 寄存器描述

GPIOx 写数据寄存器 ODR

寄存器	偏移	类型	复位值	描述
ODR	0x00	R/W	0x00	GPIO 写数据寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
PIN15	PIN14	PIN13	PIN12	PIN11	PIN10	PIN9	PIN8
7	6	5	4	3	2	1	0
PIN7	PIN6	PIN5	PIN4	PIN3	PIN2	PIN1	PIN0

位域	名称	描述
31:16	-	-
15	PIN15	Px15 引脚数据写寄存器位
14	PIN14	Px14 引脚数据写寄存器位
13	PIN13	Px13 引脚数据写寄存器位
12	PIN12	Px12 引脚数据写寄存器位
11	PIN11	Px11 引脚数据写寄存器位
10	PIN10	Px10 引脚数据写寄存器位
9	PIN9	Px9 引脚数据写寄存器位
8	PIN8	Px8 引脚数据写寄存器位
7	PIN7	Px7 引脚数据写寄存器位
6	PIN6	Px6 引脚数据写寄存器位
5	PIN5	Px5 引脚数据写寄存器位
4	PIN4	Px4 引脚数据写寄存器位
3	PIN3	Px3 引脚数据写寄存器位
2	PIN2	Px2 引脚数据写寄存器位
1	PIN1	Px1 引脚数据写寄存器位
0	PINO	Px0 引脚数据写寄存器位

GPIOx 方向寄存器 DIR

寄存器	偏移	类型	复位值	描述
DIR	0x04	R/W	0x00	GPIO 方向寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
PIN15	PIN14	PIN13	PIN12	PIN11	PIN10	PIN9	PIN8
7	6	5	4	3	2	1	0
PIN7	PIN6	PIN5	PIN4	PIN3	PIN2	PIN1	PIN0

位域	名称	描述
31:16	-	-
		Px15 引脚方向寄存器位
15	PIN15	1: 输出
		0: 输入
		Px14 引脚方向寄存器位
14	PIN14	1: 输出
		0: 输入
		Px13 引脚方向寄存器位
13	PIN13	1: 输出
		0: 输入
		Px12 引脚方向寄存器位
12	PIN12	1: 输出
		0: 输入
		Px11 引脚方向寄存器位
11	PIN11	1: 输出
		0: 输入
		Px10 引脚方向寄存器位
10	PIN10	1: 输出
		0: 输入
		Px9 引脚方向寄存器位
9	PIN9	1: 输出
		0: 输入
		Px8 引脚方向寄存器位
8	PIN8	1: 输出
		0: 输入

			0001012227777
		Px7 引脚方向寄存器位	
7	PIN7	1: 输出	
		0: 输入	
		Px6 引脚方向寄存器位	
6	PIN6	1: 输出	
		0: 输入	
		Px5 引脚方向寄存器位	
5	PIN5	1: 输出	
		0: 输入	
		Px4 引脚方向寄存器位	
4	PIN4	1: 输出	
		0: 输入	
		Px3 引脚方向寄存器位	
3	PIN3	1: 输出	
		0: 输入	
		Px2 引脚方向寄存器位	
2	PIN2	1: 输出	
		0: 输入	
		Px1 引脚方向寄存器位	
1	PIN1	1: 输出	
		0: 输入	
		Px0 引脚方向寄存器位	
0	PINO	1: 输出	
		0: 输入	

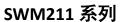
GPIOx 中断触发条件寄存器 INTLVLTRG

寄存器	偏移	类型	复位值	描述
INTLVLTRG	0x08	R/W	0x00	GPIO 中断触发方式

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
PIN15	PIN14	PIN13	PIN12	PIN11	PIN10	PIN9	PIN8
7	6	5	4	3	2	1	0
PIN7	PIN6	PIN5	PIN4	PIN3	PIN2	PIN1	PIN0

位域	名称	描述
31:16	-	-
		Px15 引脚中断敏感条件寄存器位
15	PIN15	1: 电平检测
		0: 边沿检测
		Px14 引脚中断敏感条件寄存器位
14	PIN14	1: 电平检测
		0: 边沿检测
		Px13 引脚中断敏感条件寄存器位
13	PIN13	1: 电平检测
		0: 边沿检测
		Px12 引脚中断敏感条件寄存器位
12	PIN12	1: 电平检测
		0: 边沿检测
		Px11 引脚中断敏感条件寄存器位
11	PIN11	1: 电平检测
		0: 边沿检测
		Px10 引脚中断敏感条件寄存器位
10	PIN10	1: 电平检测
		0: 边沿检测
		Px9 引脚中断敏感条件寄存器位
9	PIN9	1: 电平检测
		0: 边沿检测
		Px8 引脚中断敏感条件寄存器位
8	PIN8	1: 电平检测
		0: 边沿检测

		SAMINITIE VICTO
	Px7 引脚中断敏感条件寄存器位	
PIN7	1: 电平检测	
	0: 边沿检测	
	Px6 引脚中断敏感条件寄存器位	
PIN6	1: 电平检测	
	0: 边沿检测	
	Px5 引脚中断敏感条件寄存器位	
PIN5	1: 电平检测	
	0: 边沿检测	
	Px4 引脚中断敏感条件寄存器位	
PIN4	1: 电平检测	
	0: 边沿检测	
	Px3 引脚中断敏感条件寄存器位	
PIN3	1: 电平检测	
	0: 边沿检测	
	Px2 引脚中断敏感条件寄存器位	
PIN2	1: 电平检测	
	0: 边沿检测	
	Px1 引脚中断敏感条件寄存器位	
PIN1	1: 电平检测	
	0: 边沿检测	
	Px0 引脚中断敏感条件寄存器位	
PINO	1: 电平检测	
	0: 边沿检测	
	PIN6 PIN5 PIN4 PIN3 PIN2 PIN1	PIN7 1: 电平检测 0: 边沿检测 Px6 引脚中断敏感条件寄存器位 1: 电平检测 0: 边沿检测 Px5 引脚中断敏感条件寄存器位 1: 电平检测 0: 边沿检测 Px4 引脚中断敏感条件寄存器位 1: 电平检测 0: 边沿检测 Px3 引脚中断敏感条件寄存器位 1: 电平检测 0: 边沿检测 Px2 引脚中断敏感条件寄存器位 1: 电平检测 0: 边沿检测 Px1 引脚中断敏感条件寄存器位 1: 电平检测 0: 边沿检测 Px0 引脚中断敏感条件寄存器位 1: 电平检测 0: 边沿检测 Px0 引脚中断敏感条件寄存器位 1: 电平检测 0: 边沿检测



GPIOx 中断沿触发配置寄存器 INTBE

寄存器	4馬 本	类型	复位值	描述
INTBE	0х0с	R/W	0x00	GPIOx 中断沿触发配置寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15						_	
13	14	13	12	11	10	9	8
PIN15	14 PIN14	13 PIN13	12 PIN12	PIN11	10 PIN10	9 PIN9	8 PIN8

位域	名称	描述
31:16	-	-
		Px15 引脚中断沿触发配置寄存器位
4.5	DINIAE	1: 相应位为双边沿触发中断,即上升沿和下降沿都会触发中断
15	PIN15	0:相应位为单边沿触发中断,由 INTRISEEN 寄存器相应位确定是上升沿/下降沿触
		发
		Px14 引脚中断沿触发配置寄存器位
14	PIN14	1: 相应位为双边沿触发中断,即上升沿和下降沿都会触发中断
14	PIN14	0:相应位为单边沿触发中断,由 INTRISEEN 寄存器相应位确定是上升沿/下降沿触
		发
		Px13 引脚中断沿触发配置寄存器位
13	PIN13	1:相应位为双边沿触发中断,即上升沿和下降沿都会触发中断
13	FINIS	0:相应位为单边沿触发中断,由 INTRISEEN 寄存器相应位确定是上升沿/下降沿触
		发
		Px12 引脚中断沿触发配置寄存器位
12	PIN12	1: 相应位为双边沿触发中断,即上升沿和下降沿都会触发中断
12	11112	0:相应位为单边沿触发中断,由 INTRISEEN 寄存器相应位确定是上升沿/下降沿触
		发
		Px11 引脚中断沿触发配置寄存器位
11	PIN11	1: 相应位为双边沿触发中断,即上升沿和下降沿都会触发中断
	11111	0:相应位为单边沿触发中断,由 INTRISEEN 寄存器相应位确定是上升沿/下降沿触
		发
		Px10 引脚中断沿触发配置寄存器位
10	PIN10	1: 相应位为双边沿触发中断,即上升沿和下降沿都会触发中断
10	INTO	0:相应位为单边沿触发中断,由 INTRISEEN 寄存器相应位确定是上升沿/下降沿触
		发

	1837 1918 1979 1970 1970	SWIVIZII 余列
		Px9 引脚中断沿触发配置寄存器位
	DINIO	1: 相应位为双边沿触发中断,即上升沿和下降沿都会触发中断
9	PIN9	0:相应位为单边沿触发中断,由 INTRISEEN 寄存器相应位确定是上升沿/下降沿触
		发
		Px8 引脚中断沿触发配置寄存器位
	PIN8	1: 相应位为双边沿触发中断,即上升沿和下降沿都会触发中断
0	PINO	0:相应位为单边沿触发中断,由 INTRISEEN 寄存器相应位确定是上升沿/下降沿触
		发
		Px7 引脚中断沿触发配置寄存器位
7	PIN7	1:相应位为双边沿触发中断,即上升沿和下降沿都会触发中断
ĺ	FIIV	0:相应位为单边沿触发中断,由 INTRISEEN 寄存器相应位确定是上升沿/下降沿触
		发
		Px6 引脚中断沿触发配置寄存器位
6	PIN6	1:相应位为双边沿触发中断,即上升沿和下降沿都会触发中断
Ĭ		0:相应位为单边沿触发中断,由 INTRISEEN 寄存器相应位确定是上升沿/下降沿触
		发
		Px5 引脚中断沿触发配置寄存器位
5	PIN5	1:相应位为双边沿触发中断,即上升沿和下降沿都会触发中断
		0:相应位为单边沿触发中断,由 INTRISEEN 寄存器相应位确定是上升沿/下降沿触
		发
		Px4 引脚中断沿触发配置寄存器位
4	PIN4	1:相应位为双边沿触发中断,即上升沿和下降沿都会触发中断
		0:相应位为单边沿触发中断,由 INTRISEEN 寄存器相应位确定是上升沿/下降沿触
		发
		Px3 引脚中断沿触发配置寄存器位
3	PIN3	1:相应位为双边沿触发中断,即上升沿和下降沿都会触发中断
		0:相应位为单边沿触发中断,由 INTRISEEN 寄存器相应位确定是上升沿/下降沿触
		发
		Px2 引脚中断沿触发配置寄存器位
2	PIN2	1. 相应位为双边沿触发中断,即上升沿和下降沿都会触发中断
		0:相应位为单边沿触发中断,由 INTRISEEN 寄存器相应位确定是上升沿/下降沿触
		发
		Px1 引脚中断沿触发配置寄存器位
1	PIN1	1. 相应位为双边沿触发中断,即上升沿和下降沿都会触发中断
		0:相应位为单边沿触发中断,由 INTRISEEN 寄存器相应位确定是上升沿/下降沿触
		发
		Px0 引脚中断沿触发配置寄存器位
o	PINO	1:相应位为双边沿触发中断,即上升沿和下降沿都会触发中断
		0:相应位为单边沿触发中断,由 INTRISEEN 寄存器相应位确定是上升沿/下降沿触
		发

GPIOx 中断触发极性寄存器 INTRISEEN

寄存器	偏移	类型	复位值	描述
INTRISEEN	0x10	R/W	0x00	GPIO 中断触发极性

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	
	17	13	12	11	10	9	8
PIN15	PIN14	PIN13	PIN12	PIN11	PIN10	PIN9	PIN8

位域	名称	描述
31:16	-	-
		Px15 引脚中断事件寄存器位
15	PIN15	1: 上升沿/高电平触发中断
		0: 下降沿/低电平触发中断
		Px14 引脚中断事件寄存器位
14	PIN14	1: 上升沿/高电平触发中断
		0: 下降沿/低电平触发中断
		Px13 引脚中断事件寄存器位
13	PIN13	1: 上升沿/高电平触发中断
		0: 下降沿/低电平触发中断
		Px12 引脚中断事件寄存器位
12	PIN12	1: 上升沿/高电平触发中断
		0: 下降沿/低电平触发中断
		Px11 引脚中断事件寄存器位
11	PIN11	1: 上升沿/高电平触发中断
		0: 下降沿/低电平触发中断
		Px10 引脚中断事件寄存器位
10	PIN10	1: 上升沿/高电平触发中断
		0: 下降沿/低电平触发中断
		Px9 引脚中断事件寄存器位
9	PIN9	1: 上升沿/高电平触发中断
		0: 下降沿/低电平触发中断
		Px8 引脚中断事件寄存器位
8	PIN8	1: 上升沿/高电平触发中断
		0: 下降沿/低电平触发中断

		Px7 引脚中断事件寄存器位
7	PIN7	1: 上升沿/高电平触发中断
		0: 下降沿/低电平触发中断
		Px6 引脚中断事件寄存器位
6	PIN6	1: 上升沿/高电平触发中断
		0: 下降沿/低电平触发中断
		Px5 引脚中断事件寄存器位
5	PIN5	1: 上升沿/高电平触发中断
		0: 下降沿/低电平触发中断
		Px4 引脚中断事件寄存器位
4	PIN4	1: 上升沿/高电平触发中断
		0: 下降沿/低电平触发中断
		Px3 引脚中断事件寄存器位
3	PIN3	1: 上升沿/高电平触发中断
		0: 下降沿/低电平触发中断
		Px2 引脚中断事件寄存器位
2	PIN2	1: 上升沿/高电平触发中断
		0: 下降沿/低电平触发中断
		Px1 引脚中断事件寄存器位
1	PIN1	1: 上升沿/高电平触发中断
		0: 下降沿/低电平触发中断
		Px0 引脚中断事件寄存器位
0	PIN0	1: 上升沿/高电平触发中断
		0: 下降沿/低电平触发中断

GPIOx 中断使能寄存器 INTEN

寄存器	偏移	类型	复位值	描述
INTEN	0x14	R/W	0x00	GPIO 中断使能

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	
	17	13	12	11	10	9	8
PIN15	PIN14	PIN13	PIN12	PIN11	PIN10	PIN9	PIN8

位域	名称	描述
31:16	-	-
		Px15 引脚中断使能寄存器位
15	PIN15	1: 相应位为中断使能
		0: 相应位为中断禁止
		Px14 引脚中断使能寄存器位
14	PIN14	1: 相应位为中断使能
		0: 相应位为中断禁止
		Px13 引脚中断使能寄存器位
13	PIN13	1: 相应位为中断使能
		0: 相应位为中断禁止
		Px12 引脚中断使能寄存器位
12	PIN12	1: 相应位为中断使能
		0: 相应位为中断禁止
		Px11 引脚中断使能寄存器位
11	PIN11	1: 相应位为中断使能
		0: 相应位为中断禁止
		Px10 引脚中断使能寄存器位
10	PIN10	1: 相应位为中断使能
		0: 相应位为中断禁止
		Px9 引脚中断使能寄存器位
9	PIN9	1: 相应位为中断使能
		0: 相应位为中断禁止
		Px8 引脚中断使能寄存器位
8	PIN8	1: 相应位为中断使能
		0: 相应位为中断禁止

			011111111111111111111111111111111111111
		Px7 引脚中断使能寄存器位	
7	PIN7	1: 相应位为中断使能	
		0: 相应位为中断禁止	
		Px6 引脚中断使能寄存器位	
6	PIN6	1: 相应位为中断使能	
		0: 相应位为中断禁止	
		Px5 引脚中断使能寄存器位	
5	PIN5	1: 相应位为中断使能	
		0: 相应位为中断禁止	
		Px4 引脚中断使能寄存器位	
4	PIN4	1: 相应位为中断使能	
		0: 相应位为中断禁止	
		Px3 引脚中断使能寄存器位	
3	PIN3	1: 相应位为中断使能	
		0: 相应位为中断禁止	
		Px2 引脚中断使能寄存器位	
2	PIN2	1: 相应位为中断使能	
		0: 相应位为中断禁止	
		Px1 引脚中断使能寄存器位	
1	PIN1	1: 相应位为中断使能	
		0: 相应位为中断禁止	
		Px0 引脚中断使能寄存器位	
o	PINO	1: 相应位为中断使能	
		0: 相应位为中断禁止	

GPIOx 原始中断状态寄存器 INTRAWSTAT

寄存器		类型	复位值	描述
INTRAWSTAT	0x18	R/W	0x00	GPIO 中断原始状态

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15						_	
13	14	13	12	11	10	9	8
PIN15	14 PIN14	13 PIN13	12 PIN12	PIN11	10 PIN10	9 PIN9	8 PIN8

位域	名称	描述
31:16	-	-
		Px15 引脚原始中断状态寄存器位
15	PIN15	1: 检测到中断触发条件(不受使能影响)
		0: 没有检测到中断触发条件(不受使能影响)
		Px14 引脚原始中断状态寄存器位
14	PIN14	1: 检测到中断触发条件(不受使能影响)
		0: 没有检测到中断触发条件(不受使能影响)
		Px13 引脚原始中断状态寄存器位
13	PIN13	1: 检测到中断触发条件(不受使能影响)
		0: 没有检测到中断触发条件(不受使能影响)
		Px12 引脚原始中断状态寄存器位
12	PIN12	1: 检测到中断触发条件(不受使能影响)
		0: 没有检测到中断触发条件(不受使能影响)
		Px11 引脚原始中断状态寄存器位
11	PIN11	1: 检测到中断触发条件(不受使能影响)
		0: 没有检测到中断触发条件(不受使能影响)
		Px10 引脚原始中断状态寄存器位
10	PIN10	1: 检测到中断触发条件(不受使能影响)
		0: 没有检测到中断触发条件(不受使能影响)
		Px9 引脚原始中断状态寄存器位
9	PIN9	1: 检测到中断触发条件(不受使能影响)
		0: 没有检测到中断触发条件(不受使能影响)
		Px8 引脚原始中断状态寄存器位
8	PIN8	1: 检测到中断触发条件(不受使能影响)
		0: 没有检测到中断触发条件(不受使能影响)

		Px7 引脚原始中断状态寄存器位	
7	PIN7	1: 检测到中断触发条件(不受使能影响)	
		0: 没有检测到中断触发条件(不受使能影响)	
		Px6 引脚原始中断状态寄存器位	
6	PIN6	1: 检测到中断触发条件(不受使能影响)	
		0: 没有检测到中断触发条件(不受使能影响)	
		Px5 引脚原始中断状态寄存器位	
5	PIN5	1: 检测到中断触发条件(不受使能影响)	
		0: 没有检测到中断触发条件(不受使能影响)	
		Px4 引脚原始中断状态寄存器位	
4	PIN4	1: 检测到中断触发条件(不受使能影响)	
		0: 没有检测到中断触发条件(不受使能影响)	
		Px3 引脚原始中断状态寄存器位	
3	PIN3	1: 检测到中断触发条件(不受使能影响)	
		0: 没有检测到中断触发条件(不受使能影响)	
		Px2 引脚原始中断状态寄存器位	
2	PIN2	1: 检测到中断触发条件(不受使能影响)	
		0: 没有检测到中断触发条件(不受使能影响)	
		Px1 引脚原始中断状态寄存器位	
1	PIN1	1: 检测到中断触发条件(不受使能影响)	
		0: 没有检测到中断触发条件(不受使能影响)	
		Px0 引脚原始中断状态寄存器位	
0	PINO	1: 检测到中断触发条件(不受使能影响)	
		0: 没有检测到中断触发条件(不受使能影响)	

GPIOx 中断状态寄存器 INTSTAT

寄存器	偏移	类型	复位值	描述
INTSTAT	0x1c	R/W	0x00	GPIO 中断状态

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
PIN15	PIN14	PIN13	PIN12	PIN11	PIN10	PIN9	PIN8
7	6	5	4	3	2	1	0
PIN7	PIN6	PIN5	PIN4	PIN3	PIN2	PIN1	PIN0

位域	名称	描述
31:16	-	-
		Px15 引脚中断状态寄存器位
4.5	DINIA	1: 检测到了中断
15	PIN15	0: 没有检测到中断
		INTSTAT.PINx = INTRAWSTAT.PINx & INTEN.PINx
		Px14 引脚中断状态寄存器位
1.4	PIN14	1: 检测到了中断
14	PIN14	0: 没有检测到中断
		INTSTAT.PINx = INTRAWSTAT.PINx & INTEN.PINx
		Px13 引脚中断状态寄存器位
13	DINI12	1: 检测到了中断
13	PIN13	0:没有检测到中断
		INTSTAT.PINx = INTRAWSTAT.PINx & INTEN.PINx
		Px12 引脚中断状态寄存器位
12	PIN12	1: 检测到了中断
12	INIZ	0:没有检测到中断
		INTSTAT.PINx = INTRAWSTAT.PINx & INTEN.PINx
		Px11 引脚中断状态寄存器位
11	PIN11	1: 检测到了中断
	INII	0:没有检测到中断
		INTSTAT.PINx = INTRAWSTAT.PINx & INTEN.PINx
		Px10 引脚中断状态寄存器位
10	PIN10	1: 检测到了中断
	11110	0:没有检测到中断
		INTSTAT.PINx = INTRAWSTAT.PINx & INTEN.PINx

			344141211 71(7)
		Px9 引脚中断状态寄存器位	
		1: 检测到了中断	
9	PIN9	0: 没有检测到中断	
		INTSTAT.PINx = INTRAWSTAT.PINx & INTEN.PINx	
		Px8 引脚中断状态寄存器位	
		1: 检测到了中断	
8	PIN8	0: 没有检测到中断	
		INTSTAT.PINx = INTRAWSTAT.PINx & INTEN.PINx	
		Px7 引脚中断状态寄存器位	
L	2007	1: 检测到了中断	
7	PIN7	0: 没有检测到中断	
		INTSTAT.PINx = INTRAWSTAT.PINx & INTEN.PINx	
		Px6 引脚中断状态寄存器位	
	51116	1: 检测到了中断	
6	PIN6	0: 没有检测到中断	
		INTSTAT.PINx = INTRAWSTAT.PINx & INTEN.PINx	
		Px5 引脚中断状态寄存器位	
L	DINE	1: 检测到了中断	
5	PIN5	0: 没有检测到中断	
		INTSTAT.PINx = INTRAWSTAT.PINx & INTEN.PINx	
		Px4 引脚中断状态寄存器位	
	51114	1: 检测到了中断	
4	PIN4	0: 没有检测到中断	
		INTSTAT.PINx = INTRAWSTAT.PINx & INTEN.PINx	
		Px3 引脚中断状态寄存器位	
	5,112	1: 检测到了中断	
3	PIN3	0: 没有检测到中断	
		INTSTAT.PINx = INTRAWSTAT.PINx & INTEN.PINx	
		Px2 引脚中断状态寄存器位	
	DINIS	1: 检测到了中断	
2	PIN2	0: 没有检测到中断	
		INTSTAT.PINx = INTRAWSTAT.PINx & INTEN.PINx	
		Px1 引脚中断状态寄存器位	
	DINA	1: 检测到了中断	
1	PIN1	0: 没有检测到中断	
		INTSTAT.PINx = INTRAWSTAT.PINx & INTEN.PINx	
		Px0 引脚中断状态寄存器位	
		1: 检测到了中断	
0	PINO	0:没有检测到中断	
		INTSTAT.PINx = INTRAWSTAT.PINx & INTEN.PINx	
		1	

GPIOx 中断清除寄存器 INTCLR

寄存器	偏移	类型	复位值	描述
INTCLR	0x20	R/W	0x00	GPIO 中断清除

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	
	17	13	12	11	10	9	8
PIN15	PIN14	PIN13	PIN12	PIN11	PIN10	PIN9	PIN8

位域	名称	描述
31:16	-	-
15	PIN15	Px15 引脚中断清除寄存器位,写 1 清除中断
14	PIN14	Px14 引脚中断清除寄存器位,写 1 清除中断
13	PIN13	Px13 引脚中断清除寄存器位,写 1 清除中断
12	PIN12	Px12 引脚中断清除寄存器位,写 1 清除中断
11	PIN11	Px11 引脚中断清除寄存器位,写 1 清除中断
10	PIN10	Px10 引脚中断清除寄存器位,写 1 清除中断
9	PIN9	Px9 引脚中断清除寄存器位,写 1 清除中断
8	PIN8	Px8 引脚中断清除寄存器位,写 1 清除中断
7	PIN7	Px7 引脚中断清除寄存器位,写 1 清除中断
6	PIN6	Px6 引脚中断清除寄存器位,写 1 清除中断
5	PIN5	Px5 引脚中断清除寄存器位,写 1 清除中断
4	PIN4	Px4 引脚中断清除寄存器位,写 1 清除中断
3	PIN3	Px3 引脚中断清除寄存器位,写 1 清除中断
2	PIN2	Px2 引脚中断清除寄存器位,写 1 清除中断
1	PIN1	Px1 引脚中断清除寄存器位,写 1 清除中断
0	PIN0	Px0 引脚中断清除寄存器位,写 1 清除中断

GPIOx 读数据寄存器 IDR

寄存器	偏移	类型	复位值	描述
IDR	0x30	R/W	0x00	GPIO 读数据寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	
	17	13	12	11	10	9	8
PIN15	PIN14	PIN13	PIN12	PIN11	PIN10	PIN9	PIN8

位域	名称	描述
31:16	-	-
15	PIN15	Px15 引脚数据读寄存器位
14	PIN14	Px14 引脚数据读寄存器位
13	PIN13	Px13 引脚数据读寄存器位
12	PIN12	Px12 引脚数据读寄存器位
11	PIN11	Px11 引脚数据读寄存器位
10	PIN10	Px10 引脚数据读寄存器位
9	PIN9	Px9 引脚数据读寄存器位
8	PIN8	Px8 引脚数据读寄存器位
7	PIN7	Px7 引脚数据读寄存器位
6	PIN6	Px6 引脚数据读寄存器位
5	PIN5	Px5 引脚数据读寄存器位
4	PIN4	Px4 引脚数据读寄存器位
3	PIN3	Px3 引脚数据读寄存器位
2	PIN2	Px2 引脚数据读寄存器位
1	PIN1	Px1 引脚数据读寄存器位
0	PIN0	Px0 引脚数据读寄存器位

GPIOx PINn 数据寄存器 DATAPINx(x = 0~15)

CI IOX I IIII	· 3X J/A FU 1.	I AA DAIA	APIIVX(X – U	
寄存器	偏移	类型	复位值	描述
DATAPINO	0x40	R/W	0x00	GPIO PINO 数据寄存器
寄存器	偏移	类型	复位值	描述
DATAPIN1	0x44	R/W	0x00	GPIO PIN1 数据寄存器
寄存器	偏移	类型	复位值	描述
DATAPIN2	0x48	R/W	0x00	GPIO PIN2 数据寄存器
寄存器	偏移	类型	复位值	描述
DATAPIN3	0x4C	R/W	0x00	GPIO PIN3 数据寄存器
寄存器	偏移	类型	复位值	描述
DATAPIN4	0x50	R/W	0x00	GPIO PIN4 数据寄存器
	•			•
寄存器	偏移	类型	复位值	描述
DATAPIN5	0x54	R/W	0x00	GPIO PIN5 数据寄存器
	•	.	-	•
寄存器	偏移	类型	复位值	描述
DATAPIN6	0x58	R/W	0x00	GPIO PIN6 数据寄存器
	•			
寄存器	偏移	类型	复位值	描述
DATAPIN7	0x5C	R/W	0x00	GPIO PIN7 数据寄存器
	•	•		•
寄存器	偏移	类型	复位值	描述
DATAPIN8	0x60	R/W	0x00	GPIO PIN8 数据寄存器
	1	.	-	•
寄存器	偏移	类型	复位值	描述
DATAPIN9	0x64	R/W	0x00	GPIO PIN9 数据寄存器
	T T	<u>, </u>	<u>'</u>	·
寄存器	偏移	类型	复位值	描述
DATAPIN10	0x68	R/W	0x00	GPIO PIN10 数据寄存器
	L			
寄存器	偏移	类型	复位值	描述
DATAPIN11	0x6C	R/W	0x00	GPIO PIN11 数据寄存器
	I	1		1
寄存器	偏移	类型	复位值	描述
DATAPIN12	0x70	R/W	0x00	GPIO PIN12 数据寄存器
	I	<u> </u>	1	1
寄存器	偏移	类型	复位值	描述

DATAPIN		0x74	R/W	0x00	GPIO PIN13 数据寄存器
---------	--	------	-----	------	------------------

寄存器	偏移	类型	复位值	描述
DATAPIN14	0x78	R/W	0x00	GPIO PIN14 数据寄存器

寄存器	偏移	类型	复位值	描述
DATAPIN15	0x7C	R/W	0x00	GPIO PIN15 数据寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
			-				DATAPINI

位域	名称	描述
31:1	-	_
		GPIOx PINn 数据寄存器。
0	DATAPINi	读:GPIOx PINn 的输入数据
		写:GPIOx PINn 的输出数据

6.8 加强型定时器(TIMER)

6.8.1 概述

SWM211 系列所有型号 TIMER 操作均相同, 不同型号具备 TIMER 数量可能不同。使用前需使能 TIMER 模块时钟。

每个 TIMER 模块均具备定时器功能(使用片内时钟作为计数基准)和计数器功能(使用片外时钟作为计数基准)、输出比较及输入捕获功能。

TIMERO 支持 Hall 功能及连续脉宽捕捉功能。

6.8.2 特性

- 3路32位通用定时器
 - 24 位计数器
 - 8位预分频
- 可单独配置计时触发条件为内部时钟或者外部输入
- 支持脉冲捕获及宽度测量,检测脉冲极性可配
- 支持脉冲发送功能,可作为 PWM 使用
- TIMERO 支持 HALL 功能,可采集霍尔传感器
- TIMERO~1 输出可作为外部触发事件信号
- 定时器溢出脉冲输出,可用于触发 ADC

6.8.3 模块结构框图

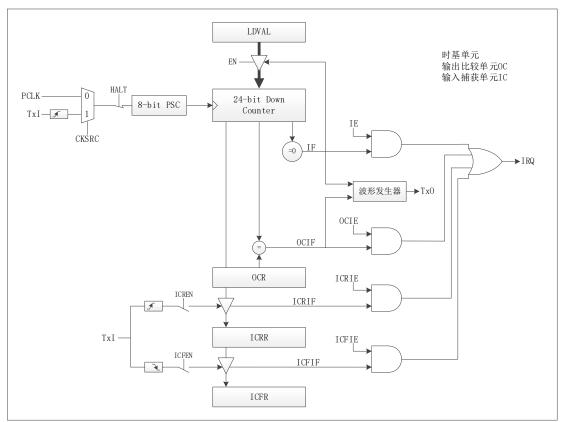


图 6-10 TIMER 模块结构框图

6.8.4 功能描述

定时器

使用 TIMERx 作为定时器时,为递减计数。流程如下:

- 将控制寄存器(CRx)中 MODEx 位配置为定时器,CLKSRCx 位配置计数源选择,配置为 使用系统时钟作为计数源。
- 通过装载值寄存器(LOADx)设置计数起始值。
- 使能寄存器(EN)对应位使能为 1。
- 对应 TIMERx 开始递减计数,计数到 0 时,产生中断,同时重新装载计数值,进行下一周期计数。

在计数过程中,可通过对当前值寄存器(VALUEx)进行读取,获取当前计数值。

定时器计数过程中改变装载值寄存器(LOADx)值,将在下个计数周期(计数到 0 重新装载)生效,不会改变本周期计数值。

定时器计数过程中,可以通过 HALT 寄存器控制位置 1 暂停指定通道计数,置 0 后继续计数。如图 6-11 所示。

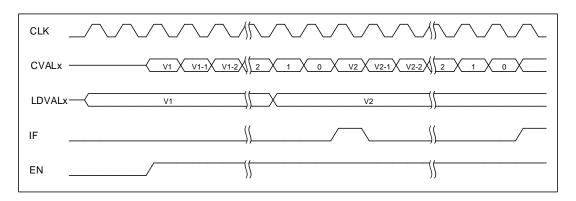


图 6-11 定时器工作示意图

计数器

使用 TIMERx 作为计数器时,为递减计数。流程如下:

- 将控制寄存器(CRx)中 MODEx 位配置为计数器,CLKSRCx 位计数源选择配置为外部的 cntsrc 的上升沿。此时,对应 TIMER 将以配置为 CNT 引脚外部输入的上升沿作为计数目标。
- 针对外部信号输入引脚进行如下操作:
 - 配置 PORTCON 模块中 INEN 寄存器使能引脚输入功能。
 - 通过 PORTX FUNC 寄存器将引脚切换为指定数字功能。

- 通过装载值寄存器(LOADx)设置计数目标值。
- 使能寄存器(EN)对应位使能为 1,对应 TIMERx 开始递减计数,计数到 0 时,产生中断,同时重新装载计数值,进行下一周期计数。

在计数过程中,可通过对当前值寄存器(VALUEx)进行读取,获取当前计数值。

定时器计数过程中改变装载值寄存器(LOADx)值,将在下个计数周期(计数到 0 重新装载)生效,不会改变本周期计数值。

计数器使用过程中,可以通过 HALT 寄存器控制位置 1 暂停指定通道计数,置 0 后继续计数。 示意图如图 6-12 所示。

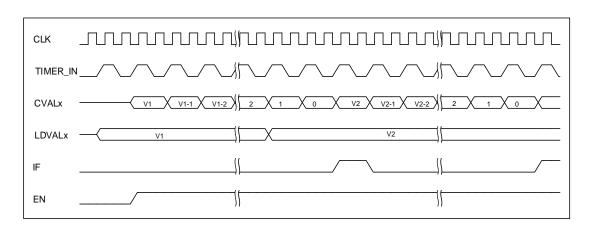


图 6-12 计数器工作示意图

级联

当 TIMER 无法满足计数宽度或时间长度时,可以通过级联方式,使计数周期为 TIMER 位宽相乘的关系。最高支持两级级联。

使用方式如下:

- TIMERn 根据需要设置为定时器或计数器模式
- TIMERn+1 设置为级联模式(CLKSRCx 位配置为使用上一路计数器的进位标志)
- LOADn = 目标计数值 A
- LOADn+1 = 目标计数值 B, 总计数周期为 A*B
- 使能 TIMERn+1 中断
- 使能 TIMERn+1
- 使能 TIMERn
- TIMERn+1 中断产生,在中断程序中使能 TIMERn 中断
- TIMERn 中断产生, 计数周期完成

示意图如图 6-13 所示:

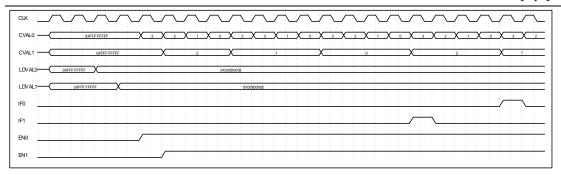


图 6-13 级联模式工作示意图

脉冲发送

所有 TIMER 模块均支持脉冲发送功能,可发送指定脉宽的方波。该计数器为向下计数。使用方式如下:

- 针对外部信号输入引脚进行如下操作
 - 配置 PORTCON 模块中使能引脚输出功能
 - 通过 PORTX_FUNC 寄存器将引脚切换为 TIMER 对应数字功能
- TIMER 初始化
 - 指定要被设置的定时器
 - 设置 TIMER 的工作模式为 OC(输出比较)模式
 - 设置定时周期
- 输出比较功能初始化
 - 指定要被设置的定时器
 - 设置当计数器的值递减到 MATCH 时引脚输出电平翻转
 - 设置初始输出电平
- 启动定时器
- 每次周期结束时,会更新翻转电平配置

示意图如图 6-14 所示:

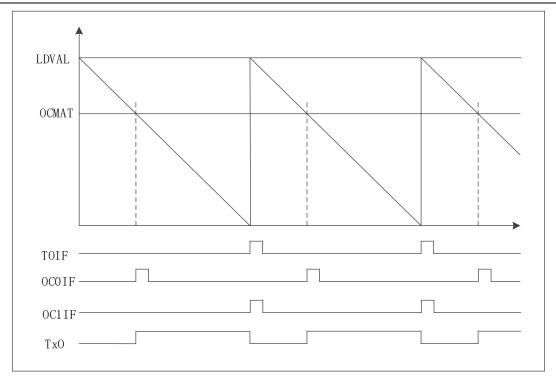


图 6-14 脉冲发送示意图

脉冲捕捉

所有 TIMER 模块均支持用于捕捉外部脉宽,可记录外部单个脉冲宽度。

使用方式如下:

- ◆ 针对外部信号输入引脚进行如下操作
 - 配置 PORTCON 模块中 INEN 寄存器使能引脚输入功能
 - 通过 PORTX_FUNC 寄存器将引脚切换为 TIMER 对应数字功能
- 设置中断使能寄存器(IEx),使能中断
- 使能寄存器(EN)对应位使能,启动捕捉功能
- 当指定引脚出现变化沿时,开始记录宽度,再次出现沿时,将对应种类的脉宽长度记录于 ICLOWx 或 ICHIGHx 寄存器,并产生中断。
- 进入中断,读取脉冲长度寄存器,获取指定种类的脉冲宽度
- 如果不操作 EN 位,则持续记录电平宽度,直至 EN 位关闭。

捕捉高电平示意图如图 6-15 所示。

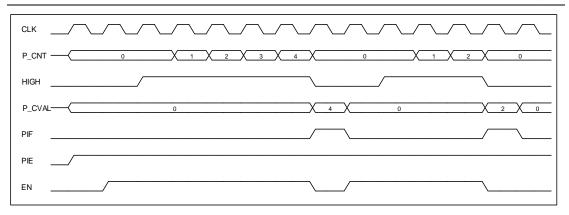


图 6-15 单次高电平捕捉示意图

低电平示意图如图 6-16 所示。

图 6-16 单次低电平捕捉示意图

霍尔接口

TIMERO 模块提供了 HALL 接口功能,能够自动记录脉冲变化间隔,并产生中断。

使用方式如下:

- HALL 功能为指定引脚,且不同封装可能有所差异,具体引脚详见管脚排布:
 - 配置 PORTCON 模块中 INEN 寄存器使能引脚输入功能
 - 通过 PORTX FUNC 寄存器将引脚切换为 HALL 功能
- 配置 HALLSR 寄存器,设置对应 HALL 输入信号的原状态
- 配置 TIMERO 装载值寄存器(LOADx)
- 使能 HALL 模式控制寄存器中输入 HALL 信号触发使能位(HALLEN)
- 清除输入 HALL 信号触发中断的状态(HALLIF)
- 使能 HALL 中断(HALLIE)
- TIMERO 使能(EN)

● 当外部 HALLX 引脚产生指定电平变化时,将(计数器加载值-计数器当前值)的结果保存到寄存器 HALLDR 中,计数器复位到加载值重新计数,并产生 TIMER 中断。同时 HALLIF 寄存器 IFx 将产生对应标示位,标识对应引脚产生电平变化。

记录示意图如图 6-17 所示。

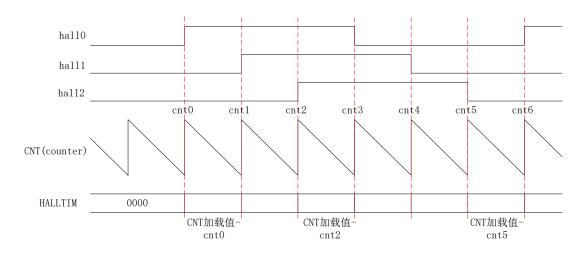


图 6-17 HALL 记录值

HALLO、HALL1、HALL2 是 HALL 功能的三个输入引脚,任意一个 HALL 引脚上出现跳变沿时,将(计数器加载值-计数器当前值)的结果保存到寄存器 HALLDR 中,并且计数器复位到加载值重新计数。

HALLO~2 信号输入同时支持连接至 CMPO~2,可通过 ACMPCR2 寄存器 HALLx 位配置,可选择为 CMPxOUT 引脚或者 HALL IO 引脚。

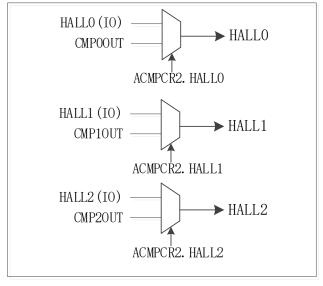


图 6-18 HALL 对应关系图

中断配置与清除

每路 TIMER 均具备独立中断,通过中断使能寄存器 IE 进行各 TIMER 中断使能。通过中断状态寄存器 IF 进行中断查询及清除。

TIMER 中断

可通过配置中断使能寄存器 IEx 相应位使能中断。当检测到中断触发条件时,中断标志寄存器 IFx 相应位中置 1。如需清除此标志,需在相应标志位中写 1 清零(R/W1C),否则中断在开启状态下会一直进入。

HALL 中断

可通过配置 HALL 模式控制寄存器对应位设置输入 HALLx 信号触发中断的条件:上升沿、下降沿、上升沿和下降沿。可通过配置 HALL 中断使能寄存器 HALLIE 相应位使能中断。当检测到中断触发条件时,HALL 中断标志寄存器 HALLIF 相应位中置 1。如需清除此标志,需在相应标志位中写 1清零(R/W1C),否则中断在开启状态下会一直进入。

6.8.5 寄存器映射

名称	偏移	类型	复位值	描述				
TIMER0	TIMERO BASE: 0x40046800							
TIMER1	R1 BASE: 0x40046840							
TIMER2 BASE: 0x40046880								
LOADx	0x0	RW	0x00	TIMERx 装载值寄存器				
VALUEx	0x4	RO	0xFFFFF	TIMERx 当前计数值寄存器				
CRx	0x8	RW	0x00	TIMERx 控制寄存器				
IEx	0x10	RW	0x00	TIMERx 中断使能寄存器				
IFx	0x14	R/W1C	0x00	TIMERx 中断状态。写 1 清零。				
HALTx	0x18	R/W	0x00	TIMERx 暂停控制				
OCCRx	0x1C	R/W	0x00	TIMER 发送脉冲控制信号				
ОСМАТх	0x20	RW	0x00	PWM 输出脉冲反转值				
ICLOWx	0x28	RO	0x00	输入脉冲低电平长度				
ICHIGHx	0x2C	RO	0x00	输入脉冲高电平长度				
PREDIVx	0x30	RW	0x00	TIMERx 预分频器装载值寄存器				
HALLIE	0x400	RW	0x00	HALL 中断使能				
HALLIF	0x408	R/W1C	0x00	HALL 中断状态				
HALLEN	0x40C	RW	0x00	HALL 模式控制				
HALLDR	0x410	RO	0x00	HALL 数据寄存器				
HALLSR	0x41C	RO	0x00	外部 HALL 输入信号的状态寄存器				
EN	0x440	RW	0x00	TIMER 使能寄存器				

6.8.6 寄存器描述

装载值寄存器 LOADx

寄存器	偏移	类型	复位值	描述
LOADx	0x0	RW	0x00	TIMERx 装载值寄存器

31	30	29	28	27	26	25	24			
				-						
23	22	21	20	19	18	17	16			
	LOADx									
15	14	13	12	11	10	9	8			
	LOADx									
7	6	5	4	3	2	1	0			
LOADx										

位域	名称	描述
31:24	-	-
23:0	LOADx	定时器通道 x 的装载值

当前值寄存器 VALUEx

寄存器	偏移	类型	复位值	描述
VALUEx	0x4	RO	0xFFFFF	TIMERx 当前计数值寄存器

31	30	29	28	27	26	25	24			
				-						
23	22	21	20	19	18	17	16			
	VALUEX									
15	14	13	12	11	10	9	8			
	VALUEX									
7	6	5	4	3	2	1	0			
	VALUEX									

位域	名称	描述
31:24	-	-
23:0	VALUEx	定时器通道 x 的计数器当前值

控制寄存器 CRx

寄存器	偏移	类型	复位值	描述
CRx	0x8	RW	0x00	TIMERx 控制寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
	-	ICEDGEx		MODEx		CLKSRCx	

位域	名称	描述				
31:6	-	-				
		输入脉冲测量模式下,计数模式:				
5:4	ICEDGEx	00:检测到上升沿或者下降沿后开始计数				
5.4	ICEDGEX	01:检测到上升沿开始计数				
		10:检测到下降沿开始计数				
		定时器工作模式:				
3:2	MODEx	00: 普通定时器模式				
5.2	IVIODEX	01: 输入脉冲测量模式				
		10:输出 PWM 模式				
		定时器计数源选择:				
		00: 使用内部系统时钟上升沿				
1:0	CLKSRCx	01:使用上一路计数器的进位标志(x=1 时,使用第 0 路; x=2 时,使用第 1 路				
		依次类推,x=0 时,使用第 TM_NO-1 路,最多支持两级级联)				
		10:使用外部触发信号的上升沿				

中断使能寄存器 IEx

寄存器	4馬 本	类型	复位值	描述
IEx	0x10	RW	0x00	TIMERx 中断使能寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
	-		ICF	ICR	-	OC0	то

位域	名称	描述
31:5	-	-
		输入脉冲下降沿中断使能
4	ICF	1: 使能
		0: 禁能
		输入脉冲上升沿中断使能
3	ICR	1: 使能
		0: 禁能
2	-	-
		输出 PWM 翻转点 0 中断使能
1	OC0	1: 使能
		0: 禁能
		计数器溢出中断
0	то	1: 使能
		0: 禁能

中断状态寄存器 IFx

寄存器	偏移	类型	复位值	描述
IFx	0x14	R/W1C	0x00	TIMERx 中断状态。写 1 清零。

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
	-		ICF	ICR	-	OC0	то

位域	名称	描述
31:5	-	-
		输入脉冲下降沿中断状态,R/W1C
4	ICF	1: 中断发生
		0: 中断未发生
		输入脉冲上升沿中断状态,R/W1C
3	ICR	1: 中断发生
		0: 中断未发生
2	-	-
		输出 PWM 翻转点 0 中断状态,R/W1C
1	осо	1: 中断发生
		0: 中断未发生
		计数器溢出中断状态,R/W1C
		1: 中断发生
	то	0: 中断未发生
		当使用级联功能时,高一级的中断不会触发,低一级的中断在全部计数结束后触
		发。比如通道0和通道1级联,当通道1和通道0的计数都到0时,通道0的溢
		出中断才会触发,通道1的溢出中断始终不会触发。

暂停控制寄存器 HALTx

寄存器	偏移	类型	复位值	描述
HALTx	0x18	R/W	0x00	TIMERx 暂停控制

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
			-				HALTx

位域	名称	描述		
31:1	-	-		
		定时器暂停控制		
О	HALTx	1: 暂停当前定时器的计数		
		0: 当前定时器正常减计数		

发送脉冲控制信号寄存器 OCCRx

寄存器	偏移	类型	复位值	描述
OCCRx	0x1C	R/W	0x00	TIMER 发送脉冲控制信号

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
		-			FORCEEN	INITLVL	FORCELVL

位域	名称	描述
31:3	-	-
2	FORCEEN	Force Level,强制输出使能
1	INITLVL	Initial Level,初始输出电平
0	FORCELVL	Force Level,强制输出电平

输出脉冲反转值寄存器 OCMATx

寄存器	偏移	类型	复位值	描述
OCMATx	0x20	RW	0x00	PWM 输出脉冲反转值

31	30	29	28	27	26	25	24			
				-						
23	22	21	20	19	18	17	16			
	OCMATx									
15	14	13	12	11	10	9	8			
	OCMATX									
7	6	5	4	3	2	1	0			
	OCMATx									

位域	名称	描述
31:24	-	_
22.0 OCNANT:		PWM 输出脉冲反转值
23:0	OCMATx	注:OCMAT = 0,占空比为 0;当 OCMAT > LOAD 时,占空比为 100%;

输入脉冲低电平长度寄存器 ICLOWx

寄存器	偏移	类型	复位值	描述
ICLOWx	0x28	RO	0x00	输入脉冲低电平长度

31	30	29	28	27	26	25	24			
				-						
23	22	21	20	19	18	17	16			
	ICLOWx									
15	14	13	12	11	10	9	8			
	ICLOWx									
7	6	5	4	3	2	1	0			
	ICLOWx									

位域	名称	描述
31:24	-	_
23:0	ICLOWx	输入脉冲低电平长度

输入脉冲高电平长度寄存器 ICHIGHx

寄存器	偏移	类型	复位值	描述
ICHIGHx	0x2C	RO	0x00	输入脉冲高电平长度

31	30	29	28	27	26	25	24			
				-						
23	22	21	20	19	18	17	16			
	ICHIGHx									
15	14	13	12	11	10	9	8			
	ICHIGHX									
7	6	5	4	3	2	1	0			
	ICHIGHx									

位域	名称	描述
31:24	-	_
23:0	ICHIGHx	输入脉冲高电平长度

预分频器装载值寄存器 PREDIVx

寄存器	偏移	类型	复位值	描述
PREDIVx	0x30	RW	0x00	TIMERx 预分频器装载值寄存器

31	30	29	28	27	26	25	24		
				-					
23	22	21	20	19	18	17	16		
				-					
15	14	13	12	11	10	9	8		
				-					
7	6	5	4	3	2	1	0		
	PREDIVX								

位域	名称	描述					
31:8	-	-					
		定时器时钟分频					
		0: 1分频					
		1: 2 分频					
7:0	PREDIVx						
		254: 255 分频					
		255: 256 分频					
		注:在级联模式下,除了第一级,其它级的这个字段必须设置为 0					

HALL 中断使能寄存器 HALLIE

寄存器	偏移	类型	复位值	描述
HALLIE	0x400	RW	0x00	HALL 中断使能

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
			-				HALLIE

位域	名称	描述
31:1	-	_
		HALL 中断使能。
0	HALLIE	1: HALL 中断使能
		0: HALL 中断禁能

HALL 中断状态寄存器 HALLIF

寄存器	偏移	类型	复位值	描述
HALLIF	0x408	R/W1C	0x00	HALL 中断状态

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
		-			IN2	IN1	INO

位域	名称	描述
31:3	-	-
		输入 HALL 信号 2 触发中断的状态,R/W1C
2	IN2	1: 中断已发生
		0: 中断未发生
		输入 HALL 信号 1 触发中断的状态,R/W1C
1	IN1	1: 中断已发生
		0: 中断未发生
		输入 HALL 信号 0 触发中断的状态,R/W1C
0	INO	1: 中断已发生
		0:中断未发生

HALL 模式控制寄存器 HALLEN

寄存器	偏移	类型	复位值	描述
HALLEN	0x40C	RW	0x00	HALL 模式控制

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
			-				EN

位域	名称	描述
31:1	_	-
		输入 HALL 信号触发使能
О	EN	0: 不触发
		1: 触发

HALL 数据寄存器 HALLDR

寄存器	偏移	类型	复位值	描述
HALLDR	0x410	RO	0x00	HALL 数据寄存器

31	30	29	28	27	26	25	24			
				-						
23	22	21	20	19	18	17	16			
	HALLDR									
15	14	13	12	11	10	9	8			
	HALLDR									
7	6	5	4	3	2	1	0			
	HALLDR									

位域	名称	描述
31:24	-	_
		HALL 信号触发时,通道计数器的计数值。
23:0	HALLDR	仅当定义 HALL 是有效,否则为只读,且为常 0。
		HALL 输入跳变沿将计数器(加载值-当前值)存入此寄存器

外部 HALL 输入信号的状态寄存器 HALLSR

寄存器	偏移	类型	复位值	描述
HALLSR	0x41C	RO	0x00	外部 HALL 输入信号的状态寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
		-			HALLSR2	HALLSR1	HALLSR0

位域	名称	描述
31:3	-	-
2	HALLSR2	输入 HALL 信号 2 的原状态
1	HALLSR1	输入 HALL 信号 1 的原状态
0	HALLSR0	输入 HALL 信号 0 的原状态

使能寄存器 EN

寄存器	偏移	类型	复位值	描述
EN	0x440	R/W	0x00	TIMER 使能寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
		-			EN2	EN1	EN0

位域	名称	描述
31:3	-	-
		TIMER2 使能
2	EN2	1: 使能
		0: 禁能
		TIMER1 使能
1	EN1	1: 使能
		0: 禁能
		TIMERO 使能
o	ENO	1: 使能
		0: 禁能

6.9 基础定时器(BTIMER)

6.9.1 概述

基础计数器模块, SWM211 系列所有型号 BTIMER 操作均相同, 不同型号 BTIMER 数量可能不同。 使用前需使能 BTIMER 模块时钟。

每个 BTIMER 模块均具备定时器功能,并具备一个 8 位分频器,每个定时器具备独立中断源。

6.9.2 特性

- 4路24位通用定时器
- 每路均具备独立8位预分频
- 独立中断源
- PWM 输出功能

6.9.3 模块结构框图

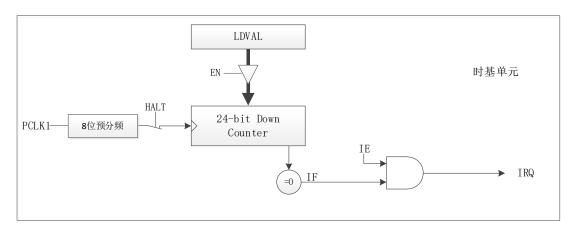


图 6-19 BTIMER 模块结构框图

6.9.4 功能描述

使用 BTIMERx 作为定时器时,为递减计数,计数源为系统时钟。

定时器

使用流程如下:

- 通过预分频寄存器(PREDIVx)设置预分频目标值(8 位),对系统时钟进行分频。
- 通过装载值寄存器(LOADx)设置计数目标值(24 位)。
- 通过中断使能寄存器(IEx)配置中断使能。
- 通过使能寄存器(EN)进行对应 BTIMERx 使能。
- 对应 BTIMERx 开始递减计数, 计数到 0 时, 产生中断, 同时重新从装载值寄存器 (LOADx) 装载计数值, 进行下一周期计数。
- 中断通过中断状态寄存器(IFx)进行查询(IEx 使能情况下),同时对该寄存器进行写 1 操作清除中断
- 在计数过程中,可通过对当前值寄存器(VALUEx)进行读取,获取当前计数值。
- 定时器计数过程中改变装载值寄存器(LOADx)值,同时向装载位(RELOAD)写 1, BTIMER 将立刻重新装载改变值并计数(RELAOD 位硬件自动清 0),当前计数 周期被中断。若不对装载位(RELOAD)进行操作,则改变值将在下个计数周期 (计数到 0 重新装载)生效,不会改变本周期计数值。

如图 6-20、图 6-21 所示。

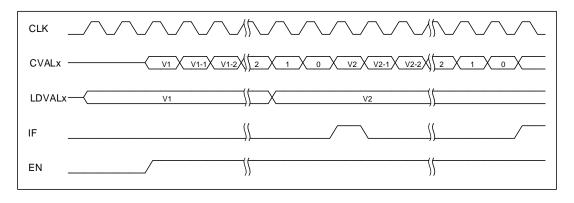


图 6-20 定时器工作示意图

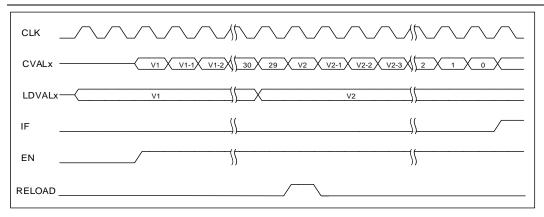


图 6-21 定时器 RELOAD 工作示意图

脉冲发送

所有 TIMER 模块均支持脉冲发送功能,可发送指定脉宽的方波。该计数器为向下计数。使用方式如下:

- 针对外部信号输入引脚进行如下操作
 - 配置 PORTCON 模块中使能引脚输出功能
 - 通过 PORTX_FUNC 寄存器将引脚切换为 TIMER 对应数字功能
- TIMER 初始化
 - 指定要被设置的定时器
 - 设置 TIMER 的工作模式为 OC(输出比较)模式
 - 设置定时周期
- 输出比较功能初始化
 - 指定要被设置的定时器
 - 设置当计数器的值递减到 MATCH 时引脚输出电平翻转
 - 设置初始输出电平
- 启动定时器
- 每次周期结束时,会更新翻转电平配置

示意图如图 6-22 所示:

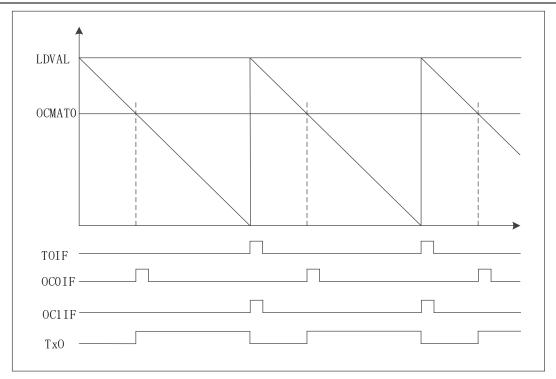


图 6-22 脉冲发送示意图

中断配置与清除

每路 TIMER 均具备独立中断,通过中断使能寄存器 IE 进行各 TIMER 中断使能。通过中断状态寄存器 IF 进行中断查询及清除。

可通过配置中断使能寄存器 IEx 使能中断。当 TIMER 计数到 0 时,中断标志寄存器 IFx 置 1。如需清除此标志,需在标志位中写 1 清零(R/W1C),否则中断在开启状态下会一直进入。

6.9.5 寄存器映射

名称	偏移	类型	复位值	描述		
BTIMER0	BA	SE: 0x4004	18800			
BTIMER1	TIMER1 BASE: 0x40048840					
BTIMER2	ВА	BASE: 0x40048880				
BTIMER3 BASE: 0x400488C0						
LOADx	0x0	RW	0x00	BTIMERx 装载值寄存器		
VALUEx	0x4	RO	0xFFFFF	BTIMERx 当前计数值寄存器		
CRx	0x8	RW	0x00	TIMERx 控制寄存器		
IEx	0x10	RW	0x00	BTIMERx 中断使能寄存器		
IFx	0x14	R/W1C	0x00	BTIMERx 中断状态。写 1 清零。		
OCCRx	0x1C	R/W	0x00	TIMER 发送脉冲控制信号		
OCMATx	0x20	RW	0x00	PWM 输出脉冲第一个反转值		
PREDIVx	0x30	RW	0x00	BTIMERx 预分频器装载值寄存器		
EN	0x440	RW	0x00	TIMER 使能寄存器		

6.9.6 寄存器描述

装载值寄存器 LOADx

寄存器	偏移	类型	复位值	描述
LOADx	0x0	RW	0x00	BTIMERx 装载值寄存器

31	30	29	28	27	26	25	24	
			-				RELOAD	
23	22	21	20	19	18	17	16	
	LOADx							
15	14	13	12	11	10	9	8	
	LOADx							
7	6	5	4	3	2	1	0	
	LOADx							

位域	名称	描述			
31:25	-	_			
		1: LDVAL 更新值将立刻加载至 CAVL 寄存器并计数。			
24	RELOAD	0: LDVAL 更新值将在当前计数周期结束后加载至 CVAL 并计数。			
		AC,自动清零			
23:0	LOADx	E时器 x 计数高 24 位的装载值			

当前值寄存器 VALUEx

寄存器	偏移	类型	复位值	描述
VALUEx	0x4	RO	0xFFFFF	BTIMERx 当前计数值寄存器

31	30	29	28	27	26	25	24	
				-				
23	22	21	20	19	18	17	16	
	VALUEX							
15	14	13	12	11	10	9	8	
	VALUEX							
7	6	5	4	3	2	1	0	
	VALUEX							

位域	名称	描述
31:24	-	_
23:0	VALUEx	定时器通道 x 的计数器高 24 位当前值

控制寄存器 CRx

寄存器	偏移	类型	复位值	描述
CRx	0x8	RW	0x00	TIMERx 控制寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
	-	-		MODE			

位域	名称	描述	
31:4	-	_	
		工作模式控制	
3:0	MODE	00xx: 普通定时器模式	
		10xx: PWM 输出模式	

中断使能寄存器 IEx

寄存器	偏移	类型	复位值	描述
IEx	0x10	RW	0x00	BTIMERx 中断使能寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
			-				то

位域	名称	描述	
31:1	-	-	
		计数器溢出中断	
0	то	1: 使能	
		0: 禁能	

中断状态寄存器 IFx

寄存器	偏移	类型	复位值	描述
IFx	0x14	R,W1C	0x00	BBTIMERx 中断状态寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
			-				то

位域	名称	述			
31:1	-	-			
		定时器通道 x 溢出中断状态,写 1 清除中断			
0	то	1: 中断已触发			
		0: 中断未触发			

发送脉冲控制信号寄存器 OCCRx

寄存器	偏移	类型	复位值	描述
OCCRx	0x1C	R/W	0x00	TIMER 发送脉冲控制信号

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
		-			FORCEEN	INITLVL	FORCELVL

位域	名称	描述
31:3	-	-
2	FORCEEN	Force Level,强制输出使能
1	INITLVL	Initial Level,初始输出电平
0	FORCELVL	Force Level,强制输出电平

输出脉冲第一个反转值寄存器 OCMATx

寄存器	偏移	类型	复位值	描述
ОСМАТх	0x20	RW	0x00	PWM 输出脉冲第一个反转值

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
	OCMATx						
15	14	13	12	11	10	9	8
	OCMATX						
7	6	5	4	3	2	1	0
	OCMATx						

位域	名称	描述			
31:24	-	_			
22.0		PWM 输出脉冲第一个反转值			
23:0	OCMATx	注:OCMAT = 0,占空比为 0;当 OCMAT > LOAD 时,占空比为 100%;			

预分频器装载值寄存器 PREDIVx

寄存器	偏移	类型	复位值	描述
PREDIVx	0x30	RW	0x00	BTIMERx 预分频器装载值寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
	PREDIVX						

位域	名称	描述			
31:8	-	-			
		定时器低八位的初值,即时钟分频系数			
		0: 1分频			
7.0		1: 2 分频			
7:0	PREDIVx				
		254: 255 分频			
		255: 256 分频			

使能寄存器 EN

寄存器	偏移	类型	复位值	描述
EN	0x440	R/W	0x00	BTIMER 使能寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
		-		EN3	EN2	EN1	EN0

位域	名称	描述			
31:4	-	-			
		BTIMER3 使能			
3	EN3	1: 使能			
		0: 禁能			
		BTIMER2 使能			
2	EN2	1: 使能			
		0: 禁能			
		BTIMER1 使能			
1	EN1	1: 使能			
		0: 禁能			
		BTIMER0 使能			
o	EN0	1: 使能			
		0: 禁能			

6.10 正交编码器(QEI)

6.10.1 概述

SWM211 系列所有型号 QEI 操作均相同。使用前需使能对应 QEI 模块时钟。

正交编码器(增量式编码器或光电式编码器)用于检测旋转运动系统的位置和速度,正交编码器可以用于多种电机的闭环控制,诸如开关磁阻(SR)电机和交流感应电机(ACM)等。

6.10.2 特性

- 可编程输入信号毛刺滤波
- 提供脉冲计数和计数方向的正交解码器
- 16 位向上/向下计数器
- 计数方向状态
- ×2 和×4 两种计数模式
- 索引复位/计数匹配复位模式
- 通用 16 位计数器(正向计数或反向计数)
- QEI 产生的中断
- A相和 B相输入的交换模式

6.10.3 模块结构框图

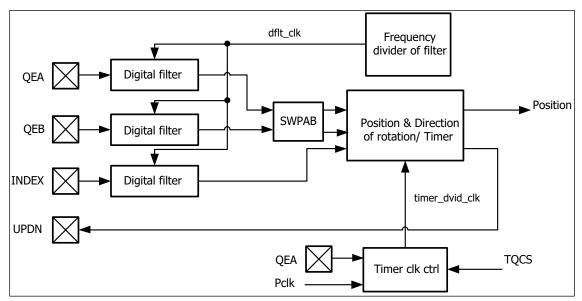


图 6-23 QEI 模块结构框图

6.10.4 功能描述

功能说明

典型的增量式编码器包括一个放置在电机转动轴上的带有开槽的轮子和一个用于检测开槽的发射/接收装置,通常有三个输出,分别为 A 相、B 相和索引相(INDXE),所提供的信息可被QEI 接口解码,用来提供电机的运动信息,包括旋转距离和旋转方向,编码盘的示意图如图6-24 所示。

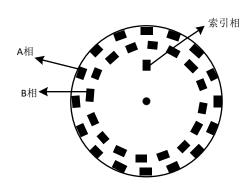


图 6-24 增量式正交编码盘示意图

时序说明

在正交编码器中 A 相(QEA)和 B 相(QEB)的位置关系是唯一的,如果 A 相超前 B 相,那么电机的旋转方向被认为是正向,反之则被认为是反向旋转,索引相作为基准来确定电机的绝对位置,电机每旋转一圈产生一个索引相脉冲信号,电机旋转时三个信号的相关时序如图 6-25 所示。

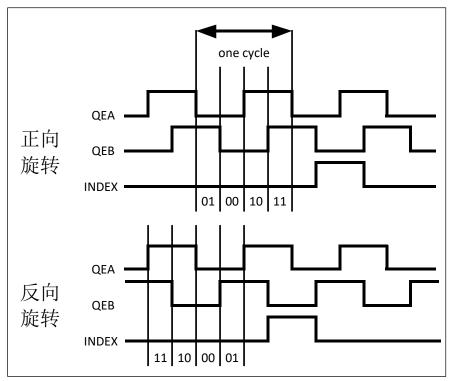


图 6-25 三相信号正向/反向旋转时序关系

正交解码器

正交解码器的工作过程如图 6-26 和图 6-27 所示:

如图 6-26 中正交解码器工作在 x4 计数模式下,在 QEA、QEB 的上升沿和下降沿处都会计数。 计数的方向由正反转状态 UPDN 决定:

- 当 UPDN 为高电平时,表示电机正转,计数器在每个计数脉冲到来时累加计数结果;
- 当 UPDN 为低电平时,表示电机反转,计数器在每个计数脉冲到来时递减。

在电机换向旋转时若产生抖动(在图 6-26 中 jitter 为抖动部分),QEI 模块会根据检测到的计数脉冲情况判断是否产生抖动,在电机抖动的情况下,计数器不工作,直到电机恢复稳定状态为止。

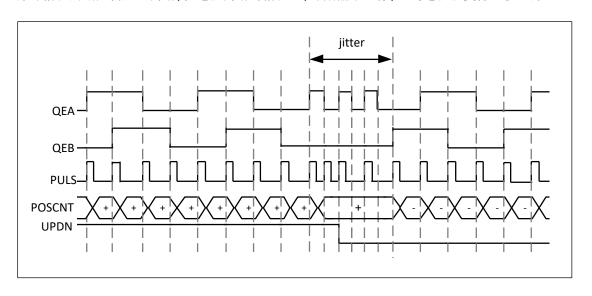


图 6-26 正交编码器 x4 计数模式示意图

如图 6-27 所示: 正交编码器工作在 x2 计数模式下,在该模式下,计数脉冲只在 QEA 的上升沿和下降沿处产生,QEB 只被用来判断旋转方向。

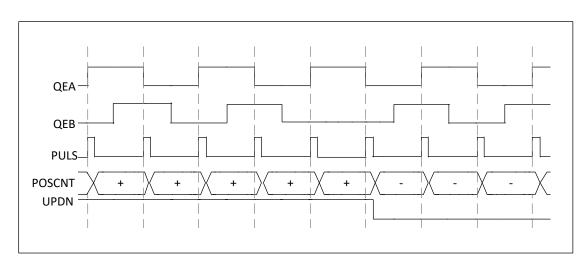


图 6-27 正交编码器 x2 计数模式示意图

计数器复位模式

在 QEI 模块中支持两种复位模式:索引复位和计数匹配复位。

索引复位

索引复位的方式如图 6-28 所示,在 INDEX 信号到来时,QEI 计数器复位,旋转方向不变时计数器每次都将在索引信号的同一位置发生复位,正向旋转和反向旋转时的复位位置相对称,将 QEI 模块配置在索引复位模式下,QEI 模块将会自动检测 INDEX 信号和电机正转/反转时索引信号的复位位置。

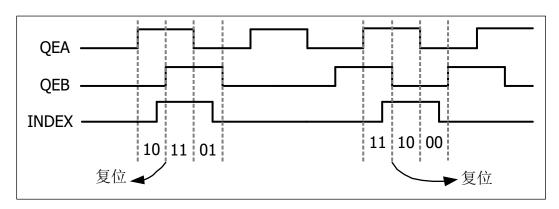


图 6-28 QEI 计数器索引复位模式

匹配复位

计数匹配复位发生在计数器的累加值与预置的目标计数值相等时发生。

在电机正向旋转时,计数器的累加值与最大计数值相等时发生复位,复位后计数器的值被置 0;在电机反向旋转时,计数器的累加值在等于零时发生复位,复位后计数器的值被复位为预置的最大计数值,计数匹配复位方式如图 6-29 所示。

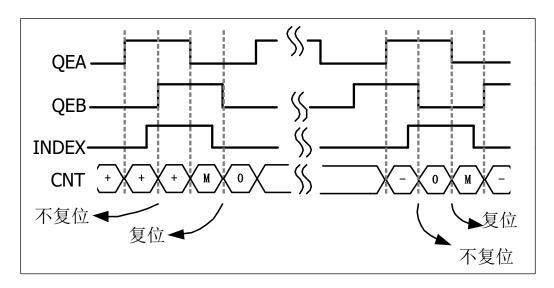


图 6-29 计数匹配复位模式

配置方式

配置方式如下:

- 通过 PORTX_FUNC 寄存器将引脚切换为 QEI 对应数字功能,并使能数字输入
- 配置 QEI 工作模式 (X2、X4)、最大计数值、复位源等设置
- 若需要使用中断,使能 QEI 相应中断
- 启动 QEI, 开始计数
- 定时读取 QEI 位置计数器和最大值计数器,从而计算电机的转动方向和速度

中断配置与清除

可通过配置 IE 寄存器设置 QEI 模块对应的中断,如需清除相应的中断标志,需在 IC 寄存器相应位中将中断状态写 1 清零(R/W1C)。

6.10.5 寄存器映射

下表列出了 QEI 模块的相关寄存器, 所列偏移量为寄存器相对于 QEI 模块基址的 16 进制增量:

名称	偏移	类型	复位值	描述			
QEI BASE: 0x4004D800							
CR	0x00	R/W	0x00	控制/状态寄存器			
POSCNT	0x04	RO	0x00	位置计数器寄存器			
MAXCNT	0x08	R/W	0x00	最大计数值寄存器			
IE	0x20	R/W	0x00	中断使能寄存器			
IM	0x24	R/W	0x00	中断状态屏蔽寄存器			
IC	0x28	R/W	0x00	清除中断状态寄存器			
IF	0x2C	RO	0x00	中断状态寄存器			
IFOV	0x30	RO	0x00	中断溢出寄存器			

6.10.6 寄存器描述

控制/状态寄存器 CR

寄存器		类型	复位值	描述
CR	0x00	R/W	0x00	控制/状态寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
		-			PAUSE	INDEX	-
7	6	5	4	3	2	1	0
MODE	RSTSRC	X2X4	ABSWAP	-			ENA

位域	名称	描述
31:11	-	-
		空闲模式停止位
10	PAUSE	1: 模块暂停工作
		0: 模块继续工作
		索引信号状态位(写无效)
9	INDEX	1: 索引引脚为高电平
		0: 索引引脚为低电平
8	-	-
		工作模式选择位
7	MODE	1: QEI 解码器模式
		0: 保留
		计数器复位模式选择位
6	RSTSRC	1: 索引信号复位
		0: 计数匹配复位
		QEI 计数模式选择位
5	X2X4	1: X4 计数模式
		0: X2 计数模式
		B 换向选择位
4	ABSWAP	1: A、B 换向
		0: A、B 未换向
3:1		
		QEI 模块使能
0	ENA	1: 使能
		0: 禁能

位置计数器寄存器 POSCNT

寄存器	偏移	类型	复位值	描述
POSCNT	0x04	RO	0x00	位置计数器寄存器

31	30	29	28	27	26	25	24			
				-						
23	22	21	20	19	18	17	16			
				-						
15	14	13	12	11	10	9	8			
	POSCNT									
7	6	5	4	3	2	1	0			
	POSCNT									

位域	名称	描述
31:16	-	_
15:0	POSCNT	位置计数器状态

最大计数值寄存器 MAXCNT

寄存器	偏移	类型	复位值	描述
MAXCNT	0x08	R/W	0x00	最大计数值寄存器

31	30	29	28	27	26	25	24			
				-						
23	22	21	20	19	18	17	16			
				-						
15	14	13	12	11	10	9	8			
	MAXCNT									
7	6	5	4	3	2	1	0			
	MAXCNT									

位域	名称	描述
31:16	-	_
15:0	MAXCNT	最大计数值

中断使能寄存器 IE

寄存器	M = 184.	类型	复位值	描述
IE	0x20	R/W	0x00	中断使能寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
		-		ERROR	CNTOV	MATCH	INDEX

位域	名称	描述
31:4	-	-
		计数错误中断使能标志位
3	ERROR	1: 使能
		0: 禁能
		计数器溢出中断使能标志位
2	CNTOV	1: 使能
		0: 禁能
		计数匹配中断使能标志位
1	МАТСН	1: 使能
		0: 禁能
		索引信号复位中断使能使能标志位
0	INDEX	1: 使能
		0: 禁能

中断状态屏蔽寄存器 IM

寄存器	M = 184.	类型	复位值	描述
IM	0x24	R/W	0x00	中断状态屏蔽寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
		-		ERROR	CNTOV	MATCH	INDEX

位域	名称	描述
31:4	-	-
		屏蔽计数错误中断标志位
3	ERROR	1: 未屏蔽
		0: 已屏蔽
		屏蔽计数器溢出中断标志位
2	CNTOV	1: 未屏蔽
		0: 已屏蔽
		屏蔽计数匹配中断标志位
1	МАТСН	1: 未屏蔽
		0: 已屏蔽
		屏蔽索引信号复位中断标志位
o	INDEX	1: 未屏蔽
		0: 已屏蔽

清除中断状态寄存器 IC

寄存器	N扁 164.	类型	复位值	描述
ıc	0x28	R/W	0x00	清除中断状态寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
		-		ERROR	CNTOV	MATCH	INDEX

位域	名称	描述
31:4	-	-
		清除计数错误中断标志位
3	ERROR	1: 清除
		0: 未清除
		清除计数器溢出中断标志位
2	CNTOV	1: 清除
		0: 未清除
		清除计数匹配中断标志位
1	МАТСН	1: 清除
		0: 未清除
		清除索引信号复位中断标志位
o	INDEX	1: 清除
		0: 未清除

中断状态寄存器 IF

寄存器	M = 184.	类型	复位值	描述
IF	0x2C	RO	0x00	中断状态寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
		-		ERROR	CNTOV	MATCH	INDEX

位域	名称	描述
31:4	-	-
		计数错误中断标志位
3	ERROR	1: 有错误
		0: 无错误
		计数器溢出中断标志位
2	CNTOV	1: 已溢出
		0: 未溢出
		计数匹配中断标志位
1	матсн	1: 计数匹配
		0: 计数未匹配
		索引信号复位中断标志位
0	INDEX	1: 以复位
		0: 未复位

中断溢出寄存器 IFOV

寄存器	M = 184.	类型	复位值	描述
IFOV	0x30	RO	0x00	中断溢出寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
		-		ERROR	CNTOV	MATCH	INDEX

位域	名称	描述
31:4	-	-
		计数错误中断溢出标志位
3	ERROR	1: 溢出
		0: 未溢出
		计数器溢出中断溢出标志位
2	CNTOV	1: 溢出
		0: 未溢出
		计数匹配中断溢出标志位
1	матсн	1: 溢出
		0: 未溢出
		索引信号复位中断溢出标志位
0	INDEX	1: 溢出
		0: 未溢出

6.11 看门狗定时器 (WDT)

6.11.1 概述

SWM211 系列所有型号 WDT 操作均相同。使用前需使能对应 WDT 模块时钟。

看门狗定时器(WDT)主要用于控制程序流程正确,在程序流长时间未按既定流程执行指定程序的情况下复位芯片。

6.11.2 特性

- 产生计数器溢出复位信号,复位信号使能可配
- 具有 16 位计数位宽,可配置灵活、宽范围的溢出周期
- 具有中断功能

6.11.3 模块结构框图

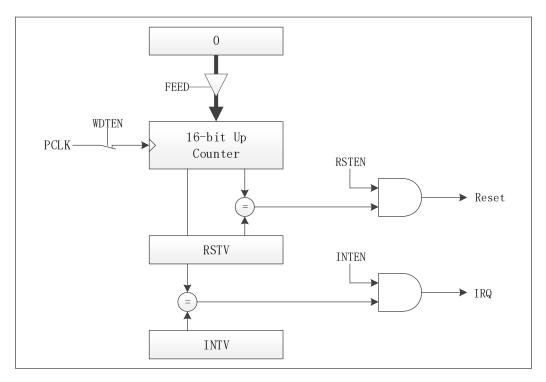


图 6-30 WDT 模块结构框图

6.11.4 功能描述

看门狗定时器(WDT)主要用于控制程序流程正确,在程序流程时间未按既定流程执行指定程序的情况下复位芯片。

WDT 模块功能分为普通模式和窗口模式。

在普通模式下,任何时候都可以喂狗执行 WDT 复位操作;

在窗口模式下,只能在 WDT 中断之后、WDT 复位之前喂狗,如果喂早了(在 WDT 中断之前)那么立即复位。

普通模式

工作示意图如图 6-31 示:

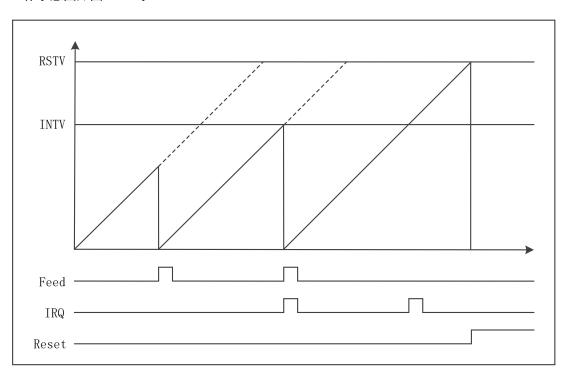


图 6-31 普通模式 WDT 工作示意图

配置方式如下:

- 配置复位值寄存器 RSTVAL,设置复位值,WDT 为递增计数
- 配置控制寄存器 CR 中 RSTEN 位,设置以系统时钟为单位递增时产生中断或产生复位
- 将控制寄存器 CR 中 EN 位置 1, 使能 WDT 模块
- 程序执行过程中通过向 FEED 寄存器写入 0x55 喂狗, 重启计数
- 若当 VALUE 寄存器加至 INTVAL 或 RETVAL,依然未执行喂狗操作,则根据 CR 寄存器设置,产生中断或复位信号

控制寄存器 CR 中 RSTEN 位配置为复位使能时, 使能后波形如图 6-32 所示:

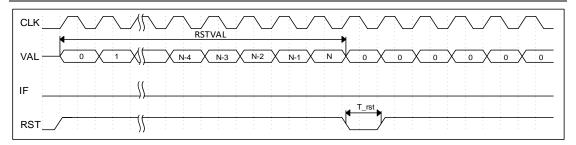


图 6-32 WDT 配置为 RESET 模式波形图

控制寄存器 CR 中 RSTEN 位配置为复位失能时,使能后波形如图 6-33 所示,中断产生后,通过 IF 寄存器进行清除。

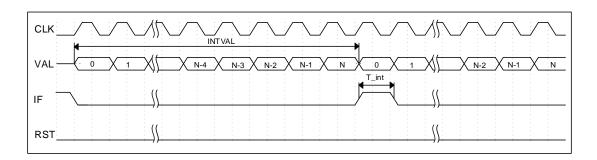


图 6-33 WDT 配置为中断模式波形图

窗口模式

在窗口模式下,只能在 WDT 中断之后、WDT 复位之前喂狗,如果在 WDT 中断之前喂狗,则立即执行 WDT 复位操作。

在窗口模式下看门狗发生中断及复位与计数值之间的关系示意图如图 6-34 所示:

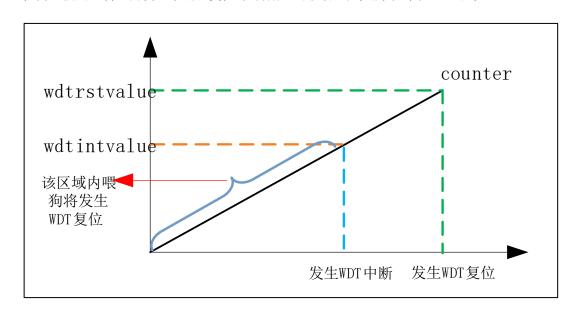


图 6-34 窗口模式看门狗发生中断及复位与计数值之间的关系示意图

配置方式如下:

- 配置复位值寄存器 RSTVAL,设置复位值,WDT 为递增计数
- 配置控制寄存器 CR 中 WINEN 位, 使能窗口功能
- 配置控制寄存器 CR 中 RSTEN 位,设置以系统时钟为单位递增时产生中断或产生复位
- 将控制寄存器 CR 中 EN 位置 1, 使能 WDT 模块
- WDT 中断之后、WDT 复位之前通过向 FEED 寄存器写入 0x55 喂狗, 重启计数
- 如果在 WDT 中断之前喂狗,则执行 WDT 复位操作

中断配置与清除

可通过配置 WDT 控制寄存器 CR 设置以系统时钟为单位递增时产生中断,并使能中断,启动 WDT,当 VALUE 寄存器加至 INTVAL,依然未执行喂狗操作时,中断标志寄存器 IF 位置 1。如需清除此标志,需在标志位中写 1 清零(R/W1C),否则中断在开启状态下会一直进入。

6.11.5 寄存器映射

下表列出了WDT模块的相关寄存器,所列偏移量为寄存器相对于WDT模块基址的16进制增量:

名称	偏移	类型	复位值	描述
WDT BASE: 0x400A0800				
RSTVAL	0x00	R/W	0xFFFF	WDT 复位值寄存器
INTVAL	0x04	R/W	0xFFFF	WDT 中断值寄存器
CR	0x08	R/W	0x00	WDT 控制寄存器
IF	0x0C	R/W	0x00	WDT 中断状态寄存器
FEED	0x10	wo	0x00	WDT 重启计数器寄存器

6.11.6 寄存器描述

WDT 复位值寄存器 RSTVAL

寄存器	偏移	类型	复位值	描述
RSTVAL	0x00	R/W	0xFFFF	WDT 复位值寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
			RST	VAL			
7	6	5	4	3	2	1	0
RSTVAL							

位域	名称	描述
31:16	_	-
		WDT 计数器的复位计数初始值。
15:0	RSTVAL	当 WDT 计数值计数到该寄存器设置值时,产生复位。
		使能后配置无效

WDT 中断值寄存器 INTVAL

寄存器	偏移	类型	复位值	描述
INTVAL	0x04	R/W	0xFFFF	WDT 中断值寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
	INTVAL						
7	6	5	4	3	2	1	0
	INTVAL						

位域	名称	描述
31:16	-	_
		WDT 计数器中断目标值
		当 WDT 计数值递增计数到该寄存器设置值时,产生中断
		产生中断后,若未设置复位值则重新归 0 计数,若设置复位值,则继续计数直至
15:0	INTVAL	复位
		当中断与复位同时使用时,INTVAL 需要小于 RSTVAL,产生中断后,若未执行喂狗
		操作,则计数器继续计数,直至产生复位
		使能后配置无效

WDT 控制寄存器 CR

寄存器	偏移	类型	复位值	描述
CR	0x08	R/W	0x00	WDT 控制寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
		-			CLK	DIV	
7	6	5	4	3	2	1	0
	-	-		WINEN	INTEN	RSTEN	EN

位域	名称	描述
31:12	-	-
		看门狗计数时钟预分频寄存器
		0000: 2
		0001: 4
		0010: 8
		0011: 16
		0100: 32
		0101: 64
		0110: 128
11:8	CLKDIV	0111: 256
		1000: 512
		1001: 1024
		1010: 2048
		1011: 4096
		1100: 8192
		1101: 16384
		1110: 32768
		1111: 65536
7:4	_	-
		WDT 窗口功能使能
3	WINEN	1: 使能窗口功能
		0: 禁止窗口功能
		WDT 中断输出使能位
2	INTEN	1: 使能中断
		0: 禁止中断

SWM211 系列

		WDT 复位输出使能位
1	RSTEN	1: 使能复位
		0: 禁止复位
		WDT 启动位
О	EN	1: 启动 WDT 计数
		0: 停止计数

WDT 中断状态寄存器 IF

寄存器	偏移	类型	复位值	描述
IF	0x0C	R/W	0x00	WDT 中断状态寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
			-				IF

位域	名称	描述		
31:1	_	-		
	li F	WDT 中断位,高有效,R/W1C		
0		硬件置位,写 1 清零		

WDT 重启寄存器 FEED

寄存器	偏移	类型	复位值	描述
FEED	0x10	wo	0x00	WDT 重启计数器寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
-							
7	6	5	4	3	2	1	0
FEED							

位域	名称	描述		
31:8	_	-		
7:0 FEED		看门狗重启计数器寄存器		
		当向该寄存器写入 0x55 后会重启看门狗计数器(喂狗操作)		

6.12 UART接口控制器(UART)

6.12.1 概述

不同型号具备 UART 数量可能不同。使用前需使能对应 UART 模块时钟。

UART 模块支持波特率配置,最高速度可达到模块时钟 16 分频。具备深度为 8 的 FIFO,同时提供了多种中断供选择。

6.12.2 特性

- 支持标准的 UART 协议
- 支持全双工模式
- 支持波特率可配置
- 支持 8 位/9 位数据格式选择
- 可配置的奇偶校验位
- 支持 1 位/2 位停止位选择
- 支持波特率自动调整
- 深度为 8 字节的发送和接收 FIFO
- 支持 break 操作自动检测
- 支持接收超时中断
- 支持 LIN 模式
- 支持发送/接收数据 LSB/MSB 选择
- 支持发送/接收数据电平反向

6.12.3 模块结构框图

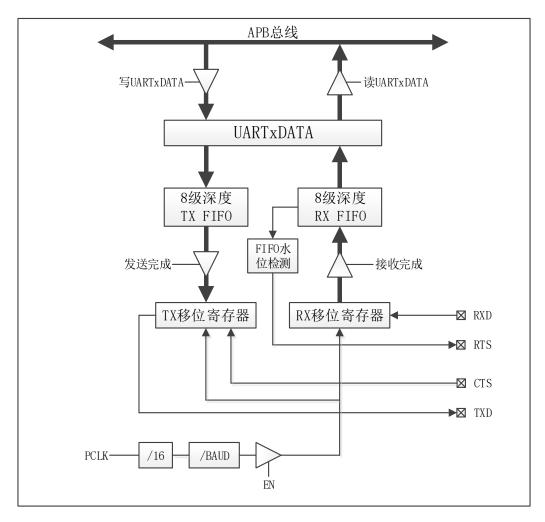


图 6-35 UART 模块结构图

6.12.4 功能描述

数据格式及波特率配置

数据位

可以通过向 CTRL 寄存器的 DATA9B 位写 1,选择支持 9 位数据模式。该位默认为 0,即 8 位数据模式

奇偶校验位

CTRL 寄存器 PAREN 位使能奇偶校验, PARMD 位选择奇偶校验模式,分别有奇校验、偶校验、常1、常0等四种校验格式,根据需求可以灵活选择配置具体看下表:

校验类型	CTRL[21]	CTRL[20]	CTRL[19]
无校验	x	x	0
奇校验	0	0	1
偶校验	0	1	1
校验位常为 1	1	0	1
校验位常为 0	1	1	1

停止位

停止位位数默认为 1 位,可通过向 CTRL 寄存器 STOP2B 位选择停止位位数为 2 位。

字符格式如图 6-36 所示:



图 6-36 UART 字符格式

使能波特率配置后,对 BAUD 寄存器 BAUD 位写入特定值,配置波特率。

配置方式如下:

目标波特率 = 系统主时钟 / (BAUD.BAUD *16 +BAUD.FRAC + 1)

波特率配置完成后,需将 CTRL 寄存器 EN 位使能, 使能 UART 模块, 使波特率配置生效。

自动波特率功能

UART 自动波特率功能可以自动测量 UART_RX 脚输入数据的波特率。当自动波特率测量完成后,测量的结果保存在 BAUD 寄存器的 BAUD 位。

自动波特率的检测时间,从 UART_RX 数据的起始位到第一个上升沿的时间,通过配置 BAUD 寄存器 ABRBIT 位设定检测的时间长度,即 2 ABRDBITS 位。配置 BAUD 寄存器 ABREN 位,使能自动波特率检测功能。

以 BAUD.ABRBIT=0,即设定检测的时间长度 1 位,通过测量起始位脉宽计算波特率为例:初始阶段,RXD 保持为 1,一旦检测到下降沿,即为接收到起始位,自动波特率计数器开始计数,当检测到第一个上升沿时,自动波特率计数器停止计数。

自动波特率计数值除以检测时间长度的结果保存在 BAUD 位, ABREN 位清零。

当自动波特率计数器溢出, BAUD 寄存器的 ABRERR 置 1, 调节失败, 写 1 清零。

配置流程:

- 选择检测时间的长度,配置 BAUD 寄存器 ABRBIT 位
- 配置 BAUD 寄存器 ABREN 位,使能自动波特率检测功能
- 等待接收调节的数据,查看 BAUD 寄存器 ABREN 位是否清零,清零表示波特率检测完成
- 检测完成后查看 BAUD 寄存器 ABRERR 位, 查看自动调节波特率时计数器是否溢出
- 如果数据未溢出,则表示成功

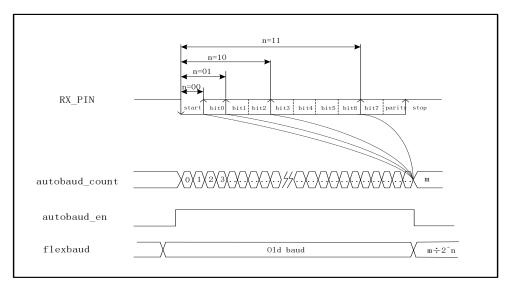


图 6-37 自动波特率示意图

FIFO 及中断设置

UART 模块包含深度为 8 的接收 FIFO 及发送 FIFO, 同时提供了与 FIFO 相配合的状态位中断, 供操作使用。使用方式如下:

- 通过 FIFO 寄存器配置中断触发条件,并获取 FIFO 内部数据数量
 - TXTHR 位设置发送 FIFO 中断阈值,当 TXFIFO 中数据量不超过设置值时,触发中断。当 TXTHR 位配置为 0 且使能 CTRL 中 TXIE 发送端 FIFO 中断时,UART 使能后即触发发送中断
 - RXTHR 位设置接收 FIFO 中断阈值,当 RXFIFO 中数据量不小于设置值时,触发中断。当 RXTHR 位配置为 0 且使能 CTRL 中 RXIE 发送端 FIFO 中断时,UART 使能后接收到 1 个数据值即触发接收中断

- 通过 CTRL 寄存器 RXIE 位及 TXIE 位,使能 FIFO 中断
- 通过查询 BAUD 寄存器 RXIF 或 TXIF 位获取 FIFO 状态

数据发送及接收

将控制及状态寄存器(CTRL)EN 位置 1 后,对应 UART 模块使能对于发送操作:

- 向 DATA 寄存器写入数据,数据发送至 UART_TX 线
- 通过读取 CTRL 寄存器 TXIDLE 位状态,获取当前发送状态
- 可通过读取 BAUD 寄存器 TXD 位,获取当前 TX 线实时状态

对于接收操作:

- 通过判断 DATA 寄存器中 VALID 位,判断是否接收到有效数据
- 当接收到有效数据后,读取 DATA 寄存器,可获得 UART_RX 线接收的数据
- 可通过读取 BAUD 寄存器 RXD 位,获取当前 RX 线实时状态
- 可设置接收超时中断。使能后,当接收相邻两个数据间隔时长超过设置时长时,将触 发中断

电平反向

通过设置 CFG 寄存器的 TXINV 位及 RXINV 位,分别对 TX 和 RX 线设置取反,设置后电平立刻生效

大小端控制

通过 CFG 寄存器的 MSBF 位进行配置,设置数据传输是从高位(MSB)开始传输还是从低位(LSB)开始传输。

LIN Fram

UART 支持 LIN 功能。在主机模式下,支持 LIN_BREAK 产生,在 从机模式下,支持 LIN_BREAK 检测。报文是以报文帧的格式传输和发送。报文帧由主机节点发送的报文头和从机发送的应答组成。报文帧的报头包括 break 域,同步域和帧识别码(帧 ID)。帧 ID 仅作为定义帧的用途,从机负责响应相关的帧 ID,响应由数据域和校验域组成。

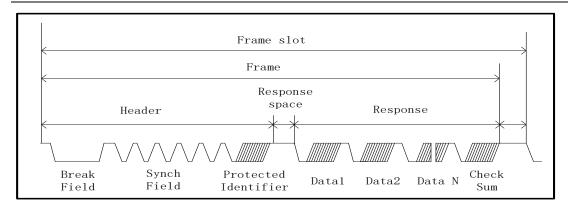


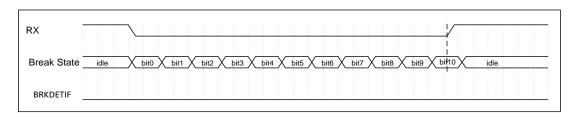
图 6-38 LIN Fram 示意图

当使用 LIN Fram 时,可通过 LINCR 寄存器进行相关设置。

发送操作:

与正常的 UART 发送相比,选用 LIN Fram 发送时,除了基本操作步骤外,还需:

- 通过配置 CFG 寄存器 BRKTXLEN 位配置发送 BRK 的长度
- 置位 LINCR 寄存器中 GENBRK 位,TX 线上会发送设定的 BRK 的长度位时间的低电平
- 设定的 BRK 的长度位低电平发送完成时 LINCR 寄存器 GENBRK 自动清零, LINCR 寄存器 GENBRKIF 置位
- LINCR 寄存器 GENBRK 清零后,软件可以写 DATA 寄存器发送数据


注意:发送 BREAK 信号时,向 DATA 寄存器写入数据,数据同样会执行发送操作,但数据电平不会体现到 TX 线上,除非发送数据期间清除 CTRL 寄存器 GENBRK 位。

接收操作:

与正常的 UART 接收相比,选用 LIN Fram 接收时,除了基本操作步骤外,还需:

- 通过配置 CFG 寄存器 BRKRXLEN 位配置接收 BRK 的判定长度
- 通过 LINCR 寄存器将 BRKDETIE 位置 1, 使能检测到 Break 信号中断
- 当 RX 线上出现低电平宽度超过设定判断长度时,LINCR 寄存器 BRKDETIF 置位,执行 UART 中断处理函数
- 在 UART 中断处理函数中检测 LINCR 寄存器 BRKDETIF 是否为 1, 如果为 1 表示检测到了 break, 向 BRKDETIF 写 1 清除中断标志

当 Break 信号不够长时, 丢弃 Break, BRKDETIF 不置 1, 如图 6-39 所示:

图 6-39 Break 信号不够长示意图

当 Break 信号恰好够长时,等接收线上收到高电平后,检测到 Break,BRKDETIF 置 1,如图 6-40 所示:

图 6-40 Break 信号恰好够长示意图

当 Break 信号足够长时,等接收线上收到高电平后,检测到 Break, BRKDETIF 置 1, 如图 6-41 所示:

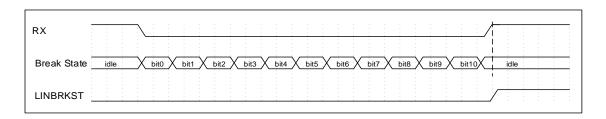


图 6-41 Break 信号足够长示意图

硬件流控

硬件流控(RTS/CTS)制主要功能为防止串口传输时出现丢失数据的现象,使用流控制功能时需将通信两端的 RTS 和 CTS 对应相连,通过 RTS 和 CTS 可以控制两个串口设备间的串行数据流。

RTS 流控制

RTS 为输出信号,通过自动流控控制寄存器使能该信号并设置有效极性(高电平/低电平)以及触发阈值,当 RTS 为有效电平时表示可以接收数据,当接收数据达到所设置的阈值时,RTS 无效。

CTS 流控制

CTS 为输入信号,通过自动流控控制寄存器使能该信号并设置有效极性(高电平/低电平),当RTS 为有效电平时表示可以发送数据。

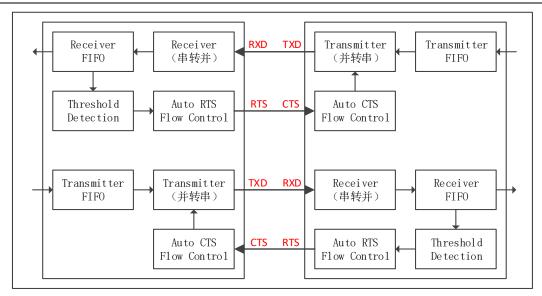


图 6-42 硬件流控

接收中断与超时中断

以如下配置为例:

方式一: FIFO 清空后, 不产生超时中断

- 配置 FIFO 寄存器 RXLVL 位为 3, 即 RXThreshold=3, 接收 FIFO 取值 3
- 配置 CTRL 寄存器 RXIE 位为 1,即 RXThresholdIEn=1,配置接收 FIFO 中的个数> RXThreshold 时触发中断
- 配置 TOCR 寄存器 TIME 位为 10,即 TimeoutTime = 10,超时时长 = TimeoutTime/(Baudrate/10)秒
- 配置 UARTX.TOCR 寄存器 MODE 位为 0, FIFO 清空后,不产生超时中断
- 配置 CTRL 寄存器 TOIE 位为 1,即 TimeoutIEn = 1,超时中断,超过
 TimeoutTime/(Baudrate/10) 秒没有在 RX 线上接收到数据且接收 FIFO 中数据个数不为
 零时可触发中断

对方发送8个数据

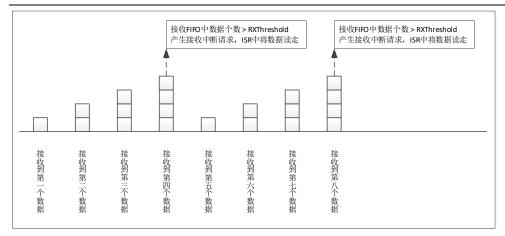


图 6-43 对方发送 8 个数据接收 FIFO 示意图

每接收到一个数据,RX FIFO 中数据个数加一,当 RX FIFO 中数据个数大于 RXThreshold 时,触发接收中断。

对方发送 9 个数据

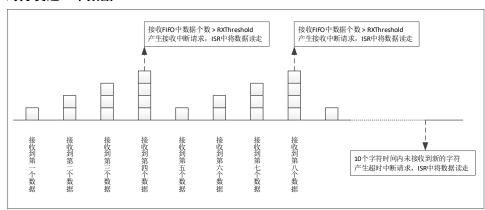


图 6-44 对方发送 9 个数据接收 FIFO 示意图

只有当接收 FIFO 中有数据,且在指定时间内未接收到新的数据时,才会触发超时中断。

若应用中希望通过数据间时间间隔作为帧间隔依据,即不管对方发送过来多少个数据,最后都能产生超时中断,可以通过在接收 ISR 中从 RX FIFO 中读取数据时总是少读一个(即让一个数据留在 RX FIFO 中)来实现。

方式二: 无论 FIFO 是否清空, 间隔指定时间后均产生超时中断

- 配置 FIFO 寄存器 RXLVL 位为 3, 即 RXThreshold=3,接收 FIFO 取值 3
- 配置 CTRL 寄存器 RXIE 位为 1,即 RXThresholdIEn=1,配置接收 FIFO 中的个数> RXThreshold 时触发中断
- 配置 TOCR 寄存器 TIME 位为 10, 即 TimeoutTime = 10, 超时时长 = TimeoutTime/(Baudrate/10) 秒
- 配置 UARTX.TOCR 寄存器 MODE 位为 1,无论 FIFO 是否清空,间隔指定时间后均产生超时中断

● 配置 CTRL 寄存器 TOIE 位为 1,即 TimeoutIEn = 1,超时中断,超过 TimeoutTime/(Baudrate/10)秒没有在 RX 线上接收到数据时可触发中断

无论接收 FIFO 中是否有数据,只要在指定时间内未接收到新的数据时,就会触发超时中断。

发送中断

以如下配置为例:

- 配置 FIFO 寄存器 TXLVL 位为 3, 即 TXThreshold = 4, 发送 FIFO 取值 4
- 配置 CTRL 寄存器 TXIE 位为 1, 即 TXThresholdIEn = 1, 配置发送 FIFO 中的个数> TXThreshold 时触发中断

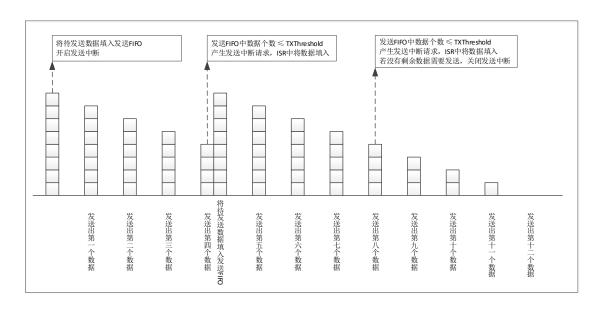


图 6-45 发送 FIFO 示意图

每发送出一个数据, TX FIFO 中数据个数减 1, 当 TX FIFO 中数据个数小于等于 TXThreshold 时, 触发发送中断。

如果初始化时 TX FIFO 中数据个数为零,则开启发送中断后会立即触发发送中断。建议在发送 FIFO 填入数据后再开启发送中断。

中断清除

此模块中中断状态位详见寄存器中各个中断标志位属性,当其中断标志位属性为 R/W1C 时,如需清除此标志,需在对应标志位中写 1 清零(R/W1C),否则中断在开启状态下会一直进入;当其中断标志位属性为 AC 时,表示此中断状态位会自动清零;当其中断标志位属性为 RO 时,表示此标志位会随着水位的变化而改变,标志位只与其当前状态有关,不需要清除。具体详见寄存器描述。

6.12.5 寄存器映射

名称	偏移	类型	复位值	描述
UARTO	BASE: 0x	40042000		
UART1	BASE: 0x	40042800		
DATA	0x00	R/W	0x0	UART 数据寄存器
CTRL	0x04	R/W	0x1	UART 控制及状态寄存器
BAUD	0x08	R/W	0x184000	UART 波特率控制寄存器
FIFO	0x0C	R/W	0x0	UART 数据队列寄存器
LINCR	0x10	R/W	0x0	LIN Frame 控制寄存器
CTSCR/ RTSCR	0x14	R/W	0x0	自动流控控制寄存器
CFG	0x18	R/W	0x334	CFG 寄存器
TOCR	0x1C	R/W	0x0	接收超时控制寄存器

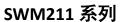
6.12.6 寄存器描述

数据接口寄存器 DATA

寄存器	偏移	类型	复位值	描述
DATA	0x00		0	UART 数据寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
		-			PAERR	VALID	DATA
7	6	5	4	3	2	1	0
	DATA						

位域	名称	描述			
31:11	-	-			
		当前读回的的数据是否存在校验错误,RO			
10	PAERR	1: 存在			
		0: 不存在			
		数据有效位,RO			
9	VALID	1:DATA 字段有有效的接收数据			
		0:DATA 字段无有效的接收数据			
		UART 数据位			
8:0	DATA	读操作,返回缓存中接收到的数据			
		写操作,将待发送的数据写入缓存中			



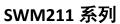
控制及状态寄存器 CTRL

寄存器	偏移	类型	复位值	描述
CTRL	0x04	R/W	1	UART 控制及状态寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
STO	STOP2B		MD	PAREN		GENBRK	BRKIE
15	14	13	12	11	10	9	8
BRKDET	TOIE		-		LOOP	EN	-
7	6	5	4	3	2	1	0
-	TXDOIE	RXOV	RXIE	RXNE	TXIE	TXFF	TXIDLE

位域	名称	描述
31:24	-	-
		停止位模式
23:22	STOP2B	00: 1位
23.22	310726	01: 2位
		1x: 保留
		奇偶校验位模式
		00:奇校验
21:20	PARMD	01: 偶校验
		10: 常1
		11: 常 0
		奇偶校验使能位
19	PAREN	1: 使能
		0: 禁能
		数据位模式
18	DATA9B	1: 9 位数据位
		0:8位数据位
17	GENBRK	0:表示 UART 正常发送数据
17	GENBRK	1:使用 LIN Fram 发送数据
		Break 中断使能:
16	BRKIE	1: 使能
		0: 禁能
		Break 检测标志位,R/W1C
15	BRKDET	1:接收到 Break
		0:没有接收到 Break

	1117 101107-0000-000	SVVIVIZII 示列
		接收数据超时中断
14	TOIE	1: 使能
		0: 禁能
13:11	_	
		回环测试模式使能位(从 TX 线发送出去的数据,在自身 RX 线上可以收到,从而
		 测试硬件是否正常工作)
10	LOOP	 1: 使能
		0: 禁能
		UART 模块使能位
9	EN	 1: 使能
		0: 禁能
8:7	_	
		发送完成中断使能位
6	TXDOIE	1: 使能
		0: 禁能
		接收端 FIFO 溢出标志位,W1C
5	RXOV	 1:接收 FIFO 溢出
		0:接收 FIFO 没有溢出
		接收端 FIFO 中断使能位
		 1:接收 FIFO 达到预定的数量时产生中断
4	RXIE	0:接收 FIFO 达到预定的数量时不产生中断
		注:接收 FIFO 中此位为 0 表示接收到 1 个数据,依次类推
		接收端 FIFO 非空标志位,RO
3	RXNE	 1: 非空
		0: 空
		发送端 FIFO 中断使能位
		1: 当发送 FIFO 内的数据少于预定的数量时产生中断
2	TXIE	0: 当发送 FIFO 内的数据少于预定的数量时不产生中断
		注:发送 FIFO 中此位为 0 表示发送 0 个数据,依次类推
		发送端 FIFO 满标志位,RO
1	TXFF	1:发送 FIFO 内的数据满
		0:发送 FIFO 内的数据不满
		发送线空闲标志位,RO
0	TXIDLE	1: 发送线空闲
		0:发送线忙,正在发送数据
		<u> </u>



波特率寄存器 BAUD

寄存器	偏移	类型	复位值	描述
BAUD	0x08	R/W	0x184000	UART 波特率控制寄存器

31	30	29	28	27	26	25	24
	FRAC				ABRERR	ABF	RBIT
23	22	21	20	19	18	17	16
ABREN	RXIF	TOIF	TXTHRF	RXTHRF	BRKIF	TXIF	RXTOIF
15	14	13	12	11	10	9	8
RXD	TXD			ВА	UD		
7	6	5	4	3	2	1	0
	BAUD						

位域	名称	描述
31:28	FRAC	波特率设置微调(波特率分频值的小数部分),参考 BAUD 的设置
		发送完成中断状态位
		1: 中断已产生
27	TXDOIF	0: 中断未产生
		RO,表示此标志位会随着水位的变化而改变,标志位只与其当前状态有关,不需
		要清除
		自动调节波特率时,计数器溢出中断标志,R/W1C
26	ABRERR	1: 自动调节波特率时,计数器溢出,调节失败。
		0:自动调节波特率时,计数器没有溢出。
		自动调节波特率时,检测的时间长度
		00: 1位长度
25:24	ABRBIT	01: 2位长度
		10: 4位长度
		11: 8位长度
		1: 打开波特率自动调节功能。
23	ABREN	0. 关闭波特率自动调节功能。
		调节完成自动清零,R/W,AC
		1:接收数据缓存达到预定数量
22	RXIF	0.接收数据缓存未达到预定数量
22	KXIF	RO,表示此标志位会随着水位的变化而改变,标志位只与其当前状态有关,不需
		要清除
		1:接收数据超出 TIME 确定的时间
		0.接收数据未超出 TIME 确定的时间
21	TOIF	RO,表示此标志位会随着水位的变化而改变,标志位只与其当前状态有关,不需
		要清除
		超过 TOTIME/BAUDRAUD 秒没有接收到新的数据时若 TOIE=1,此位由硬件置位

		300101211 7,75
		1: 发送数据缓存达到预定数量
20	TYTURE	0: 发送数据缓存未达到预定数量
20	TXTHRF	RO,表示此标志位会随着水位的变化而改变,标志位只与其当前状态有关,不需
		要清除
		1: 接收数据缓存达到预定数量
40	DYTURE	0: 接收数据缓存未达到预定数量
19	RXTHRF	RO,表示此标志位会随着水位的变化而改变,标志位只与其当前状态有关,不需
		要清除
		接收 BREAK 字符中断状态位
		1: 中断已产生
18	BRKIF	0: 中断未产生
		RO,表示此标志位会随着水位的变化而改变,标志位只与其当前状态有关,不需
		要清除
		1: 发送数据缓存内的数据少于预定的数量
4.7	TVIE	0: 发送数据缓存内的数据大于预定的数量
17	TXIF	RO,表示此标志位会随着水位的变化而改变,标志位只与其当前状态有关,不需
		要清除
		接收或超时中断标志
		11: 中断已产生
16	RXTOIF	0: 中断未产生
		RO,表示此标志位会随着水位的变化而改变,标志位只与其当前状态有关,不需
		要清除
15	RXD	直接读取接收线状态,RO
14	TXD	直接读取发送线状态,RO
		用于控制 UART 工作的波特率
13:0	BAUD	得到的波特率为: 系统主时钟 / (BAUD.BAUD *16 +BAUD.FRAC + 1)
		可通过 BAUD 寄存器 FRAC 位进行波特率微调,使波特率的误差在 5%以内。
	•	

数据队列寄存器 FIFO

寄存器	偏移	类型	复位值	描述
FIFO	0x0C		0	UART 数据队列寄存器

31	30	29	28	27	26	25	24
		-			TXT	ΓHR	
23	22	21	20	19	18	17	16
		-			RXT	ГНК	
15	14	13	12	11	10	9	8
		-			TX	LVL	
7	6	5	4	3	2	1	0
	-	-			RX	LVL	

位域	名称	描述
31:28	-	-
		设置发送 FIFO 中断(TXIF)阈值
27:24	TXTHR	1: 当发送 FIFO 里的水位不超过设置值时产生中断
		0:当发送 FIFO 里的水位不超过设置值时不产生中断
23:20	-	-
		设置接收 FIFO 中断(RXIF)阈值
19:16	RXTHR	1: 当接收 FIFO 里的水位超过设置值时产生中断
		0:当接收 FIFO 里的水位超过设置值时不产生中断
15:12	-	-
11:8	TXLVL	发送缓存的实际水位
7:4	-	-
3:0	RXLVL	接收缓存的实际水位

LIN Frame 控制寄存器 LINCR

寄存器	偏移	类型	复位值	描述
LINCR	0x10	R/W	0x0	LIN Frame 控制寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
	-		GENBRK	GENBRKIF	GENBRKIE	BRKDETIF	BRKDETIE

位域	名称	描述
31:5	-	-
		发送 LIN Break
4	GENBRK	1: 发送
4	GENBER	0: 不发送
		发送完成自动清零,R/W,AC
		LIN Break 发送完成中断状态,R/W1C
3	GENBRKIF	1: 中断已产生
3	GENBRAIF	0: 中断未产生
		注:无论 GENBRKIE 是 0 还是 1,此标志位都可以置位
		发送 LIN Break 完成中断的使能
2	GENBRKIE	1: 使能
2	GENDANIE	0: 禁能
		注:此位负责控制 GENBRKIF 中断标志是否要触发内核中断
		检测到 LIN Break 中断状态,R/W1C
1	BRKDETIF	1: 中断已产生
		0: 中断未产生
		检测到 LIN Break 中断的使能
0	BRKDETIE	1: 使能
		0: 禁能

自动流控控制寄存器 CTSCR/ RTSCR

寄存器	偏移	类型	复位值	描述
CTSCR/ RTSCR	0x14	R/W	0x0	自动流控控制寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
			-				RTSCR_STAT
7	6	5	4	3	2	1	0
CTSCR_STAT		RTSCR_THR	·	RTSCR_POL	CTSCR_POL	RTSCR_EN	CTSCR_EN

位域	名称	描述
31:9	-	-
8	RTSCR_STAT	RTS 的当前状态,RO
7	CTSCR_STAT	CTS 的当前状态,RO
		RTS 流控的触发阈值
		000:触发阈值为 1byte,内部缓存的剩余空间最多只剩 1 个 BYTE。
6:4	RTSCR_THR	001: 触发阈值为 2bytes,内部缓存的剩余空间最多只剩 2 个 BYTE。
		010: 触发阈值为 4bytes,内部缓存的剩余空间最多只剩 4 个 BYTE。
		011: 触发阈值为 6bytes,内部缓存的剩余空间最多只剩 6 个 BYTE。
		RTS 信号的极性。
3	RTSCR_POL	1:高有效,rts 输出高,可以接收数据。
		0:低有效,rts 输出低,可以接收数据
		CTS 信号的极性。
2	CTSCR_POL	1:高有效,cts 输入为高,可以发送数据。
		0:低有效,cts 输入为低,可以发送数据。
		RTS 流控使能
1	RTSCR_EN	1: rts 信号发挥流控的作用
		0:忽略 rts。
		CTS 流控使能
0	CTSCR_EN	1: cts 信号发挥流控的作用
		0:忽略 cts。

配置寄存器 CFG

寄存器	偏移	类型	复位值	描述
CFG	0x18	R/W	0	CFG 寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
	-			TXINV	RXINV	BRKR	XLEN
7	6	5	4	3	2	1	0
BRKRXLEN BRKT			XLEN		MSBF	RXEN	

位域	名称	描述
31:12	-	-
11	TXINV	1: 发送时电平取反
11	IXIIV	0:发送时电平不取反
10	RXINV	1:接收时电平取反
10	KAIIV	0:接收时电平不取反
9:6	BRKRXLEN	接收 BRK 的判定长度。
9.0	BKKKALEN	0 表示收到 1 个 bit 的 0,1 表示收到 2bit 的 0,依次类推
5:2	BRKTXLEN	发送 BRK 的长度。
5:2	BRATALEN	1 表示发送 1bit 的 0, 2 表示发送 2bit 的 0, 依次类推
1	MSBF	1: 发送和接收时 MSB 在前
1	IVISBF	0:发送和接收时 LSB 在前
		接收打开使能
	DVEN	1:接收打开。可通过 uart_rx_in 接收外来的数据。
U	RXEN	0:接收关闭。不能通过 uart_rx_in 接收外来的数据。而内部的 uart_rx_in 信号保
		持为 1。

接收超时控制寄存器 TOCR

寄存器	偏移	类型	复位值	描述
TOCR	0x1C	R/W	0x0	接收超时控制寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
	-	IFCLR	MODE		TIT	ME	
		5	4	3	2	1	0
7	6	3	7	•	-	-	•

位域	名称	描述
31:14	-	-
13	IFCLR	超时计数器清零,R/W1C
12	MODE	1: 无论 FIFO 是否清空,间隔指定时间后均产生超时中断
12	MODE	0:FIFO 清空后,不产生超时中断
		接收数据超时中断的触发条件。
11:0	TIME	计时单位为 10 个 SYMBOL TIME
		具体和实际波特率的设置相关。如波特率为 9600,则计时单位为 1/960 秒。

6.13 I2C 总线控制器(I2C)

6.13.1 概述

SWM211 系列所有型号 I2C 操作均相同, 不同型号 I2C 模块数量可能不同。使用前需使能对应 I2C 模块时钟。

I2C 模块提供了 MASTER 模式及 SLAVE 模式,基本操作及配置详见功能描述章节。

6.13.2 特性

- 支持通过 APB 总线进行配置
- 支持 master、slave 两种模式
- 支持 I2C 输入信号数字滤波
- 支持 Standard-mode (100kbps)、Fast-mode (400kbps)、Fast-mode Plus (1Mbps)、High-speed mode (3.4Mbps)
- SCL/SDA 线上数据可读
- Master 模式特性:
 - 支持 clock synchronization
 - 支持多 master 总线仲裁
 - 支持 clock stretching, slave 器件可通过拉低 SCL 来 hold 总线
 - 支持 SCL LOW 超时报警
 - 支持读、写操作
 - 支持发出的 SCL 时钟周期最大为(2^17)*pclk
 - SCL 时钟占空比可配置
- Slave 模式特性:
 - 支持多 slave
 - 支持 7 位、10 位两种地址模式
 - 支持地址 mask, 一个 slave 器件可以占用多个地址
 - ◆ 7 位地址模式, 一个 slave 器件最多可占用 128 个地址
 - ◆ 10 位地址模式, 一个 slave 器件最多可占用 256 个地址
 - 支持 clock stretching, slave 器件可通过拉低 SCL 来 hold 总线
 - 支持读、写操作

6.13.3 模块结构框图

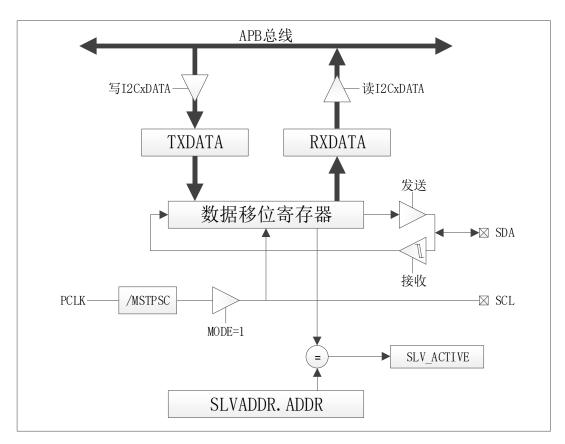


图 6-46 I2C 模块结构框图

6.13.4 功能描述

基本操作

总线设置

I2C 总线采用串行数据线(SDA)和串行时钟线(SCL)传输数据。I2C 总线的设备端口为开漏输出,必须在接口外接上拉电阻。

数据在主从设备之间通过 SCL 时钟信号在 SDA 数据线上逐字节同步传输。每一个 SCL 时钟脉冲 发送一位数据,高位在前。每发送一个字节的数据产生一个应答信号。在时钟线 SCL 高电平期间 对数据的每一位进行采样。数据线 SDA 在时钟线 SCL 为低改变,在时钟线 SCL 为高电平时保持稳定。

协议介绍

通常情况下,一个标准的通信包含四个部分:开始信号、从机地址、数据传输、停止信号。如图 6-47 所示:

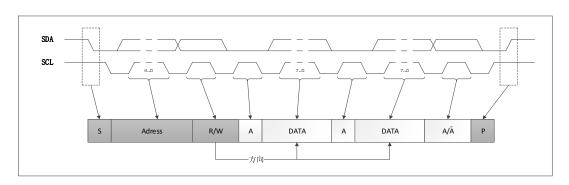


图 6-47 I2C 通信示意图

起始位发送

当总线空闲时,表示没有主机设备占用总线(SCL 和 SDA 都保持高电平),主机可以通过发送一个起始信号启动传输。启动信号,通常被称为 S 位。SCL 为高电平时,SDA 由高电平向低电平跳变。启动信号表示开始新的数据传输。

重新启动是没有先产生一个停止信号的启动信号。主机使用此方法与另一个从机或者在不释放 总线的情况下与相同的从机改变数据传输方向(例如从写入设备到写入设备的转换)。

当命令寄存器的 STA 位被置位,同时 RD 或者 WR 位被置位时,系统核心产生一个启动信号。根据 SCLK 的当前的不同状态,生成启动信号或重复启动信号。

地址发送

在开始信号后,由主机传输的第一个字节数据是从机地址。包含 7 位的从设备地址和 1 位的 RW 指示位。RW 指示位信号表示与从机的数据传输方向。在系统中的从机不可以具有相同的地址。只有从机地址和主机发送的地址匹配时才能产生一个应答位(在第九个时钟周期拉低 SDA)进行响应。对于 10 位从机地址,模块通过产生两个从机地址支持。

发送从机地址为一次写操作,在传输寄存器中保存从机地址并对 WR 位置位,从机地址将被发送到总线上。

数据发送

一旦成功取得了从机地址,主机就可以通过 R/W 位控制逐字节的发送数据。每传输一个字节都需要在第九个时钟周期产生一个应答位。

如果从机信号无效,主机可以生成一个停止信号中止数据传输或生成重复启动的信号并开始一个新的传输周期。如果从机返回一个 NACK 信号,主机就会产生一个停止信号放弃数据传输,或者产生一个重新启动信号开始一个新的传输周期。

如果主机作为接收设备,没有应答从机,从机就会释放 SDA, 主机产生停止信号或者重新启动信号。

向从机写入数据,需把将要发送的数据存入传输寄存器中并设置 WR 位。从从机中读取数据,需设置 RD 位。在数据传输过程中系统核心设置 TIP 提示标志,指示传输正在进行。当传输完成后 TIP 提示标志会自动清除。当中断使能时,中断标志位 IF 被置位,并产生中断。当中断标志位 IF 被置位后,接收寄存器收到有效数据。当 TIP 提示标志复位后,用户可以发出新的写入或读取命令。

停止位发送

主机可以通过生成一个停止信号终止通信。停止信号通常被称为 P 位,被定义为 SCL 为高电平时,SDA 由低电平向高电平跳变。

Master SCL 周期配置

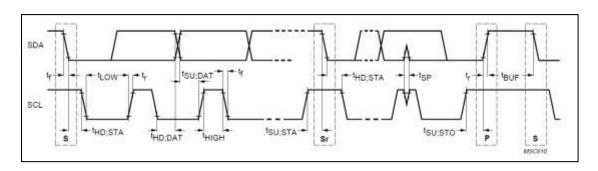
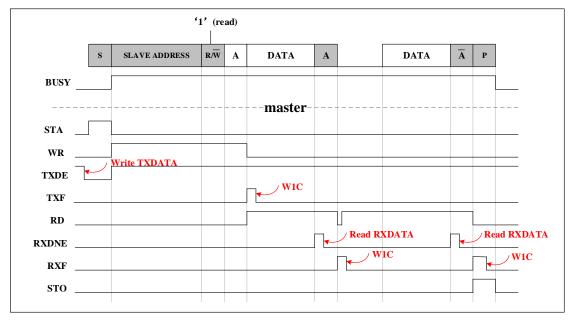


图 6-48 Master SCL 周期配置示意图

主机发送模式


I2C 模块作为主机, 初始化配置操作如下:

- 配置 PORTCON 模块中端口对应 PORTx FUNC 寄存器,将指定引脚切换为功能复用
- 配置 PORTCON 模块中端口对应 PULLU_x 上拉使能寄存器,使能端口内部上拉电阻(也可使用外部上拉电阻)
- 配置 PORTCON 模块中端口对应 INEN x 输入使能寄存器, 使能 I2C 数据线输入功能
- 配置 CR 寄存器的 EN 位,关闭 I2C 模块,确保配置寄存器过程中模块未工作

- 配置 CR 寄存器的 MASTER 位,将 I2C 模块设置为主机模式
- 配置 CR 寄存器的 EN 位, I2C 模块总线使能
- 设置时序配置寄存器 CLK,假设 pclk=48M,希望 I2C 工作在 Standard-mode(100kbps) 速度下,则每个 SCL 480 个 pclk,可以设置 SCLL=0Xa0,SCLH =0x50,DIV=0x01
- 查询 SR.BUSY,如果为 1,则等待直至其变为 0;如果为 0,则进行下一步
- 发送 Start。设置 MCR.STA=1,查询该位,直至其变为 0
- 发 slave 地址字节
 - 设置 TXDATA 为【7 位 slave 地址字节左移一位】
 - 设置 MCR.WR=1, 查询该位, 直至其变为 0(或查询到 IF 的 TXDONE=1(发送成功) 或 AL=1(仲裁丢失总线), 并写 1 清除)
 - 如果 TXDONE=1,读 TR.RXACK,如果该位为 0,表示 slave 地址匹配成功
 - 如果 AL=1,表示本 master 失去总线,不能再进行后续操作,需重新查询 SR.BUSY 位直至 1,才可以重新发送 Start 位,重新申请总线操作
- 向 slave 发送待写数据
 - 设置 TXDATA, 准备待写入 slave 的数据
 - 设置 MCR.WR=1,查询该位,直至其变为 0(或查询到 RIST 的 TXDONE=1,并写 1 清除)
 - 读 TR.RXACK,如果该位为 0,表示写数据成功
- 发 STOP。设置 MCR.STO=1,查询该位,直至其变为 0

示意图如图 6-49 所示:

图 6-49 Master 寄存器时序示意图

注:图中红色部分表示软件操作

主机接收模式

I2C 作为主机接收模式,需将 I2C 模块设置为 MASTER, 初始化过程与主发送模式相同。 I2C 作为主机从从机接收数据操作流程如下:

- 配置 PORTCON 模块中端口对应 PORTx FUNC 寄存器,将指定引脚切换为功能复用
- 配置 PORTCON 模块中端口对应 PULLU_x 上拉使能寄存器, 使能端口内部上拉电阻(也可使用外部上拉电阻)
- 配置 PORTCON 模块中端口对应 INEN x 输入使能寄存器, 使能 I2C 数据线输入功能
- 配置 CR 寄存器的 EN 位,关闭 I2C 模块,确保配置寄存器过程中模块未工作
- 配置 CR 寄存器的 MASTER 位,将 I2C 模块设置为主机模式
- 配置 CR 寄存器的 EN 位, I2C 模块总线使能
- 设置时序配置寄存器 CLK,假设 pclk=48M,希望 I2C 工作在 Standard-mode(100kbps) 速度下,则每个 SCL 480 个 pclk,可以设置 SCLL=0Xa0,SCLH =0x50,DIV=0x01
- 查询 SR.BUSY, 如果为 1,则等待直至其变为 0;如果为 0,则进行下一步
- 发送 Start。设置 MCR.STA=1,查询该位,直至其变为 0
- 发 slave 地址字节
 - 设置 TXDATA 为【7位 slave 地址字节地址右移1位】
 - 设置 MCR.WR=1, 查询该位, 直至其变为 0(或查询到 IF 的 TXDONE=1(发送成功) 或 AL=1(仲裁丢失总线), 并写 1 清除)
 - 如果 TXDONE=1,读 TR.RXACK,如果该位为 0,表示 slave 地址匹配成功
 - 如果 AL=1,表示本 master 失去总线,不能再进行后续操作,需重新查询 SR.BUSY 位直至 1,才可以重新发送 Start 位,重新申请总线操作
- 从 slave 读数据
 - 设置 TR.TXACK=0
 - 设置 MCR.RD=1, 查询直到 IF.RXNE=1
 - 读取 RXDATA, 得到 slave 数据
 - 查询 MCR.RD, 直至其变为 0(或查询到 IF.RXDONE=1, 并写 1 清除)
- 发 STOP。设置 MCR.STO=1,查询该位,直至其变为 0

从发送模式

I2C 作为从发送模式, 需将 I2C 模块设置为 SLAVE, 具体软件配置操作如下:

- 配置 PORTCON 模块中端口对应 PORTx_FUNC 寄存器,将指定引脚切换为功能复用
- 配置 PORTCON 模块中端口对应 PULLU_x 上拉使能寄存器,使能端口内部上拉电阻(也可使用外部上拉电阻)
- 配置 PORTCON 模块中端口对应 INEN x 输入使能寄存器, 使能 I2C 数据线输入功能
- 配置 CR 寄存器的 EN 位, 关闭 I2C 模块, 确保配置寄存器过程中模块未工作
- 配置 CR 寄存器的 MASTER 位,将 I2C 模块设置为从机模式
- 配置 CR 寄存器的 EN 位, I2C 模块总线使能
- 设置 slave 地址模式。SCR.SADDR10=0
- 设置 slave 地址 SADDR
- 查询直至 IF.RXSTA,表示检测到 I2C 总线上有 start 发出
- 查询直至 IF.RXNE=1。表示有 master 选中本器件
- 如果 SADDR 中设置了地址 mask,则读取 RXDATA,判断 master 发送的实际地址
- 如果判断到 TR.SLVRD=1,表示 master 希望从 slave 读取数据
- 准备数据,写TXDATA
- 查询直到 RXDONE=1,表示之前地址匹配后,返回 ACK 结束
- 查询直到 IF.TXE=1, 就可以向 TXDATA 中写入新数据了
- 查询直到 IF.TXDONE=1,表示数据发送完成。然后写 1 清除
- 查询 TR.RXACK,如果为 0,表示 master 希望继续接收数据,则可重新向 TXDATA 中写入数据;如果 RXACK=1,表示 master 希望结束读操作,则设置 TR.TXCLR,清除之前预准备到 TXDATA 中的最后一个数据。转入下一步
- 查询到 IF.RXSTO,表示检测到 I2C 总线上有 STOP 发出。本次会话结束

示意图如图 6-50 所示:

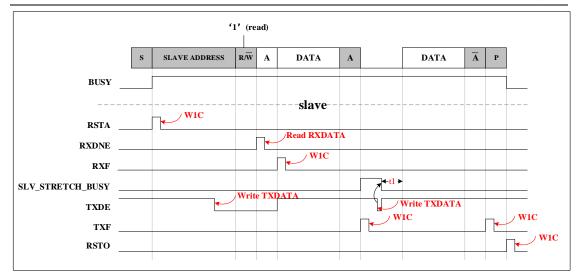


图 6-50 Slave 寄存器时序示意图

注1:图中红色部分表示软件操作

注2: 图中t1=tLOW,由CLK寄存器设置

从接收模式

I2C 作为从接收模式,需将 I2C 模块设置为 SLAVE,操作流程如下:

- 配置 PORTCON 模块中端口对应 PORTX FUNC 寄存器,将指定引脚切换为功能复用
- 配置 PORTCON 模块中端口对应 PULLU_x 上拉使能寄存器, 使能端口内部上拉电阻(也可使用外部上拉电阻)
- 配置 PORTCON 模块中端口对应 INEN_x 输入使能寄存器, 使能 I2C 数据线输入功能
- 配置 CR 寄存器的 EN 位, 关闭 I2C 模块, 确保配置寄存器过程中模块未工作
- 配置 CR 寄存器的 MASTER 位、将 I2C 模块设置为从机模式
- 配置 CR 寄存器的 EN 位, I2C 模块总线使能
- 设置 slave 地址模式。SCR.SADDR10=0
- 设置 slave 地址 SADDR
- 查询直至 IF.RXSTA,表示检测到 I2C 总线上有 start 发出
- 查询直至 IF.RXNE=1。表示有 master 选中本器件
- 如果 SADDR 中设置了地址 mask,则读取 RXDATA,判断 master 发送的实际地址
- 如果判断到 TR.SLVWR=1,表示 master 希望向 slave 写入数据
- 查询直到 RXDONE=1,表示之前地址匹配后,返回 ACK 结束。然后写 1 清除
- 设置 TR.TXACK=0
- 查询直到 IF.RXNE=1,表示 slave 接收到新数据,读取 RXDATA

- 查询直到 RXDONE=1,表示之前接收数据后,返回 ACK 结束。然后写 1 清除
- 可重复查询 IF.RXNE 位,继续接收数据,直到查询到 IF.RXSTO,表示本次会话结束

时钟延展 clock stretching

clock stretching 通过将 SCL 线拉低来暂停一个传输,直到释放 SCL 线为高电平,传输才继续进行。 以 master-receiver,slave-transmitter 为例,具体软件配置操作如下:

- 配置 PORTCON 模块中端口对应 PORTx FUNC 寄存器,将指定引脚切换为功能复用
- 配置 PORTCON 模块中端口对应 PULLU_x 上拉使能寄存器, 使能端口内部上拉电阻(也可使用外部上拉电阻)
- 配置 PORTCON 模块中端口对应 INEN_x 输入使能寄存器, 使能 I2C 数据线输入功能
- 配置 CR 寄存器的 EN 位,关闭 I2C 模块,确保配置寄存器过程中模块未工作
- 配置 CR 寄存器的 MASTER 位,将 I2C 模块设置为主机模式
- 配置 CR 寄存器的 EN 位, I2C 模块总线使能
- 设置时序配置寄存器 CLK,假设 pclk=48M,希望 I2C 工作在 Standard-mode(100kbps) 速度下,则每个 SCL 480 个 pclk,可以设置 SCLL=0Xa0,SCLH =0x50,DIV=0x01
- 查询 SR.BUSY, 如果为 1,则等待直至其变为 0;如果为 0,则进行下一步
- 发送 Start。设置 MCR.STA=1,查询该位,直至其变为 0
- 发 slave 地址字节
 - 设置 TXDATA 为【7 位 slave 地址字节左移一位】
 - 设置 MCR.WR=1, 查询该位, 直至其变为 0(或查询到 IF 的 TXDONE=1(发送成功) 或 AL=1(仲裁丢失总线), 并写 1 清除)
 - 如果 TXDONE=1,读 TR.RXACK,如果该位为 0,表示 slave 地址匹配成功
 - 如果 AL=1,表示本 master 失去总线,不能再进行后续的步骤 6~7,需查询直至 SR.BUSY=1,才可以回到步骤 4,重新发送 Start 位,重新申请总线操作
- 向 slave 发送待写数据
 - 设置 TXDATA, 准备待写入 slave 的数据
 - 设置 MCR.WR=1,查询该位,直至其变为 0(或查询到 RIST 的 TXDONE=1,并写 1 清除)
 - 读 TR.RXACK,如果该位为 0,表示写数据成功
- 发 STOP。设置 MCR.STO=1,查询该位,直至其变为 0

HS-MODE

以 master-transmitter 为例

具体软件配置操作如下:

- 设置 CR.HS=0, 以普通模式发第一个字节
- 以主机发送模式的方式,先在 F/S-mode 下发送 START 和 master code。在此过程中,可以进行 multi-master 的总线仲裁
- 如果本 master 获得了总线控制权。则进行如下步骤
- 设置 CR.HS=1。才可以设置为高速模式
- 设置 CLK 寄存器。假设 pclk=60M,希望 I2C 工作在 HS-mode(3.4Mbps)速度下,则每个 SCL 14 个 pclk,可以设置 SCLL=0x0A,SCLH=0x05,DIV=0x0
- 以主机发送模式的方式,以 High-speed 发送 Sr 和 slave 地址(不需要再判断 IF.AL 位)、 写数据等

以 slave-receiver 为例

具体软件配置操作如下:

- 根据 F/S-mode 速度设置 CLK 寄存器
- 设置 CR.MASTER=O(slave),CR.EN=1,CR.HS=0
- 设置 slave SCR.MCDE=1,等待 master 发送 master code
- 查询直到 RXNE=1,表示接收到 master code
- 读取 RXDATA 中的数据,判断是 multi-master 中的哪一个 master 获得了总线。(对于 single-master 情况,可以省略此判断,但 RXDATA 中的数据需要读走,否则会影响后续 地址和数据的接收)
- 设置 HS-mode,后续操作在 HS-mode 下进行。设置 CR.HS=1;设置 SCR.MCDE=0
- 根据 HS-mode 速度设置 CLK 寄存器
- 设置 slave 地址模式及地址。设置 SCR.SADDR10,并相应设置 SADDR
- 查询直到 IF.RXSTA=1,表示接收到 Sr
- 查询直到 RXNE=1,表示接收到匹配的地址
- 根据从机接收模式的操作继续后续操作,直至结束本次会话

中断清除

此模块中中断状态位详见寄存器中各个中断标志位属性,当其中断标志位属性为 R/W1C 时,如需清除此标志,需在对应标志位中写 1 清零(R/W1C),否则中断在开启状态下会一直进入;当其中断标志位属性为 AC 时,表示此中断状态位会自动清零;当其中断标志位属性为 RO 时,表

示此标志位会随着水位的变化而改变,标志位只与其当前状态有关,不需要清除。具体详见寄存器描述。

6.13.5 寄存器映射

名称	偏移	类型	复位值	描述
12C0	BASE:	0x400A600	0	
CR	0x0	R/W	0x0000_010C	通用配置寄存器
SR	0x4	RO	0x0000_0006	通用状态寄存器
TR	0x8	R/W	0x0000_0000	通用传输寄存器
RXDATA	0xC	RO	0x0000_0000	接收数据寄存器
TXDATA	0x10	R/W	0x0000_0000	发送数据寄存器
IF	0x14	R/W	0x0000_0001	中断标志寄存器
IE	0x18	R/W	0x0000_0001	中断使能寄存器
MCR	0x20	R/W	0x0000_0000	Master 控制寄存器
CLK	0x24	R/W	0x0003_4080	时序配置寄存器
SCR	0x30	R/W	0x0000_0000	Slave 控制寄存器
SADDR	0x34	R/W	0x0000_0000	Slave 地址寄存器

6.13.6 寄存器描述

通用配置寄存器 CR

寄存器	偏移	类型	复位值	描述
CR	0x0	R/W	0x0000_010C	通用配置寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
-		DI	NF	HS	MASTER	EN	

位域	名称	描述
31:7	-	-
		Receive SDA、SCL 数字噪声滤波(Digital Noise Filter)。
		0000: 滤波不使能。
6:3	DNF	0001: 滤波使能,且滤波能力最大1个系统时钟。
		1111: 滤波使能,且滤波能力最大 15 个系统时钟。
		High-Speed mode。仅在 master 模式下有效。
	HS	0:Standard-mode, Fast-mode, Fast-mode Plus。SCL 为 open-drain 输出。
	ПЗ	1:High-Speed mode。SCL 为电流源上拉电路输出。Master 发送 STOP 后,硬件自
		动清除本位。
		模式控制。
1	MASTER	0:slave 模式
		1: master 模式
		i2c 总线使能。
0	EN	0: 不使能。
		1: 使能。

通用状态寄存器 SR

寄存器	偏移	类型	复位值	描述
SR	0x4	RO	0x0000_0006	通用状态寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
		-			SDA	SCL	BUSY

位域	名称	描述
31:3	-	-
		I2C SDA 状态。不受 I2C 总线使能影响。
2	SDA	0: I2C SDA 为低。
		1: I2C SDA 为高。
		I2C SCL 状态。不受 I2C 总线使能影响。
1	SCL	0: I2C SCL 为低。
		1: I2C SCL 为高。
		总线忙状态。本位不受 CR.EN 位控制,当 EN 不使能时,仍然检测总线忙状态。
О	BUSY	0: 总线不忙。
		1:总线忙,I2C 总线 START 至 STOP 期间有效。

通用传输寄存器 TR

寄存器	M 扁 飞起	类型	复位值	描述
TR	0x8	R/W	0x0000_0000	通用传输寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	4.0	42	12	11	10	0	•
13	14	13	12	11	10	9	8
	14		RDS	SLVSTR	SLVWR	SLVRD	SLVACT
7	- 6						

位域	名称	描述
31:14	-	-
		Slave 接收到的数据类型。仅在 Slave 模式有效。
		00: RXDATA 为空。
13:12	SLVRDS	01:接收到的是地址。
		10:接收到的是数据。
		11:接收到的是 master code。仅当 MCDE=1 时有效。
		Slave clock stretching 忙状态。仅在 slave 模式有效。
11	SLVSTR	0: 无 clock stretching。
		1: 有 clock stretching。
		Slave 写状态。仅在 slave 模式有效。
10	SLVWR	1: Slave 接收到 master 的写请求后有效。
		0:slave 接收到 master 的读请求或 STOP 后,自动清除。
		Slave 读状态。仅在 slave 模式有效。
9	SLVRDD	1: Slave 接收到 master 的读请求后有效。
		0:slave 接收到 master 的写请求或 STOP 后,自动清除。
		Slave 活跃状态。仅在 slave 模式有效。
	CIVACT	0: slave 器件处于非活跃状态
8	SLVACT	1:slave 器件处于活跃状态。地址匹配成功后本位有效;接收到 STOP,或 Sr 后的
		地址匹配不成功,自动清除。
7:3	-	
		发送数据寄存器清空。硬件自动清除。
2	TXCLR	0: 不清空。
		1: 清空 TXDATA 中的数据,并更新 TXE 位。

SWM211 <u>系列</u>

		当作为 transmitter 时,接收到的 ACK/NACK。硬件置位,TXDONE 有效后即可查询					
1	RXACK	此位;接收到 Sr 或 STOP 会将此位清零。					
1		0:接收到 ACK					
		1: 接收到 NACK					
		当作为 receiver 时,反馈 ACK/NACK。					
		0: 反馈 ACK。					
		1: 反馈 NACK。					
0	TXACK	以下情况,ACK/NACK 不由本位决定:					
		slave 接收地址时,硬件自动反馈 ACK/NACK。					
		slave MCDE 有效,接收到 master code 时,硬件自动返回 NACK。					
		slave 接收溢出时,硬件自动反馈 NACK。					

接收数据寄存器 RXDATA

寄存器	偏移	类型	复位值	描述
RXDATA	0xC	RO	0x0000_0000	接收数据寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
	RXDATA						

位域	名称	描述			
31:8	-	_			
		接收数据寄存器			
7.0	RXDATA	RXNE 为 1,表示本寄存器中存在有效数据			
7:0 F		在完成数据接收(不包含 ACK/NACK 发送)的时刻,更新此寄存器			
		slave 接收地址字节情况,参见 RXDONE 位说明			

发送数据寄存器 TXDATA

寄存器	偏移	类型	复位值	描述
TXDATA	0x10	R/W	0x0000_0000	发送数据寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
	TXDATA						

位域	名称	描述
31:8	_	-
7.0		发送数据寄存器
7:0	TXDATA	TXE 为 0,表示本寄存器中存在待发送数据

中断标志寄存器 IF

寄存器	偏移	类型	复位值	描述
IF	0x14	R/W	0x0000_0001	中断标志寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
			-			MLTO	AL
15	14	13	12	11	10	9	8
			-			RXSTO	RXSTA
7	6	5	4	3	2	1	0
	_		RXDONE	TXDONE	RXOV	RXNE	TXE

位域	名称	描述
31:18	-	-
		Master SCL LOW 超时。写 1 清除。仅在 master 模式有效。
17	MLTO	0: 未超时。
17	IVILIO	1:超时。SCL LOW 时间超过 1024 个由 CLK 寄存器设置的 SCL LOW 时间。
		【对于 golden model,SCL LOW 超时时间由 MLTO_LIM 设置】
		Master 仲裁丢失总线。写 1 清除。仅在 master 模式有效。
16	AL	0: 无仲裁丢失总线控制权。
		1: 仲裁丢失总线控制权。
15:10	-	-
		Slave 检测到 STOP。写 1 清除。仅在 slave 模式下有效。
9	RXSTO	0: slave 未检测到 STOP。
		1: slave 检测到 STOP。
		Slave 检测到 START。写 1 清除。仅在 slave 模式下有效。
8	RXSTA	0:slave 未检测到 START。
		1: slave 检测到 START。
7:5	-	-

		SVVIVIZII 示ツi
		接收结束。写 1 清除,包含 ACK/NACK 时间。
		0:接收未结束。
		1:接收结束。
		slave 接收情况说明:
	RXDONE	Slave 器件 7 位地址模式下,slave 地址字节(含 R/W 位)接收完成,若地址匹
4		配,则生成此中断。
		Slave 器件 10 位地址模式下,slave 地址的第 2 字节(ADDR[7:0])接收完成,若 10
		位地址匹配,则生成此中断;跟在 repeat START 之后的 slave 地址第 1 字节,若地
		址 8、9 位匹配,则生成此中断;跟在 START 之后的第 1 字节接收完成后,即使
		ADDR[9:8]匹配,也不会生成此中断。
		Slave 模式,MCDE=1,接收到 master code 时,会生成此中断。
		发送结束。写 1 清除,包含 ACK/NACK 时间。
		0:发送未结束,或没有发送。
3	TXDONE	1: 发送结束。
		说明:当 master 模式发送字节发生仲裁丢失总线时,不产生本中断。
		接收数据寄存器溢出。软件写 1 清除。(更新的时刻点,不包含 ACK/NACK 发送)
		0: 无溢出。
		1:当 RXDATA 非空时,又接收到新的字节,会产生溢出。溢出发生时,新数据丢
2	RXOV	失。
		说明:对于 slave 模式,如果 STRE 位有效,当接收数据寄存器非空,且又接收到
		新的字节,slave 器件会拉低 SCL 信号,直到 RXDATA 中的旧数被读走,再把新数存
		到 RXDATA 中,此情况不会产生溢出。
		接收数据寄存器非空。
		0:接收数据寄存器空,不存在未读取的接收数据。
		1:接收数据寄存器非空,存在未读取的接收数据。
		在接收完数据的时刻更新此位(不包含 ACK/NACK 发送时间)。
		如果新数据接收完成时,旧数据未及时读取,分如下几种情况处理:
		Master 模式:
1	RXNE	新数据丢失。同时置位 RXD_OV 位。
		Slave 模式:
		A.STRE=0:新数据丢失。同时置位 RXD_OV 位,硬件自动反馈 NACK。
		B.STRE=1:正常返回 ACK,然后在 master 发送下一个字节前,slave 将 SCL hold
		在低电平,直到旧数据被读走后,再将新数据更新到 RXDATA 寄存器中。最后释放
		SCL。
		发送数据寄存器空。
		0:发送数据寄存器非空,不允许写 TXDATA 寄存器。
		1:发送数据寄存器空,允许写 TXDATA 寄存器。
0	TXE	
		在发送数据开始的时刻,发送数据被硬件读走后,此位被更新为 1(此时 TXDONE
		仍为 0)。
		向 TXDATA 寄存器写入新数据,可清除此位。
	1	

中断使能寄存器 IE

寄存器	偏移	类型	复位值	描述
IE	0x18	R/W	0x0000_0001	中断使能寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
			-			MLTO	AL
12	11	10	9	8	10	9	8
			-			RXSTO	RXSTA
7	6	5	4	3	2	1	0
	-		RXDONE	TXDONE	RXOV	RXNE	TXE

位域	名称	描述
31:18	-	-
		Master SCL LOW 超时中断使能。
17	MLTO	0: 不使能。
		1: 使能。
		Master 仲裁丢失总线中断使能。
16	AL	0: 不使能。
		1: 使能。
15:10	-	-
		Slave 检测到 STOP 中断使能。
9	RXSTO	0: 不使能。
		1: 使能。
		Slave 检测到 START 中断使能。
8	RXSTA	0: 不使能。
		1: 使能。
7:5	_	-
		接收数据结束中断使能。
4	RXDONE	0: 不使能。
		1: 使能。
		发送数据结束中断使能。
3	TXDONE	0: 不使能。
		1: 使能。
		接收数据寄存器溢出中断使能。
2	RXOV	0: 不使能。
		1: 使能。

SWM211 系列

		接收数据寄存器非空中断使能。
1	RXNE	0: 不使能。
		1: 使能。
		发送数据寄存器空中断使能。
o	TXE	0: 不使能。
		1: 使能。

Master 控制寄存器 MCR

寄存器	偏移	类型	复位值	描述
MCR	0x20	R/W	0x0000_0000	Master 控制寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
		-		STO	WR	RD	STA

位域	名称	描述
31:5	-	-
3	STO	写 1,产生 STOP,完成后自动清零。
		写 1,发送 TXDATA 中数据,完成后(含 ACK/NACK 时间)自动清零。
2	WR	向本位写 1 前,要求 TXDATA 不能为空。否则,本位无法设置。
		注意:WR 与 RD 位不能同时写 1.
1	RD	写 1,接收数据到 RXDATA 中,完成后(含 ACK/NACK 时间)自动清零。
	CTA.	写 1,产生 START,完成后自动清零。
U	STA	注意:允许 STA 和 WR 同时置位,优先发送 START。

时序配置寄存器 CLK

寄存器	偏移	类型	复位值	描述
CLK	0x24	R/W	0x0003_4080	时序配置寄存器

31	30	29	28	27	26	25	24
	-			SDAH			
23	22	21	20	19	18	17	16
			D	IV			
15	14	13	12	11	10	9	8
	SCLH						
7	6	5	4	3	2	1	0
	SCLL						

位域	名称	描述
31:28	-	
		SDA 数据保持时间配置。(对 Master 和 Slave 有效)
		对于 master:tHD;DAT=(SDAH + 4) * Tpclk
		对于 slave:tHD;DAT=(SDAH + DNF + 6) * Tpclk
27:24	SDAH	注意:如果应用环境比较恶劣,则应注意,出现在 SDA 数据保持期间的毛刺有可
		能导致 SDA 的变化沿提前毛刺宽度的时间(如果此时 SCL 上无毛刺,则总线上会
		出现非预期的 STA、STOP)。在此情况下,应设置 SDAH 使得 tHD;DAT 大于最大的
		毛刺宽度。
		时钟预分频,详见 SCLH 和 SCLL 描述。(仅对 Master 模式有效)
		0: 1分频
23:16	DIV	1: 2分频
23.10	DIV	2: 3 分频
		255: 256 分频
15:8	SCLH	SCL 时钟高电平时间配置。(仅对 Master 模式有效)
15.6	SCLH	tHIGH=((SCLH+1) * (DIV+1) + DNF + 6) * Tpclk
		SCL 时钟低电平时间配置。(对 Master 模式有效;在 slave 模式下,如果使能了
		STRETCH 功能,且 ASDS 配置为 0,则需要配置本寄存器。在 slave 写 TXDATA 后,
7:0	SCLL	延迟本寄存器设置的时间,再释放 SCL。)
7.0	BCLL	tLOW=((SCLL+1) * (DIV+1) + SDAH + 5) * Tpclk
		SCL 的周期为 tHIGH+tLOW。
		推荐 SCLH 与 SCLL 的比例为 1:2。

注: 示意图如图 6-48 所示

Slave 控制寄存器 SCR

寄存器	偏移	类型	复位值	描述
SCR	0x30	R/W	0x0000_0000	Slave 控制寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
	-	-		ASDS	STRE	MCDE	SADDR10

位域	名称	描述				
31:4	-	-				
		Stretching 后数据建立时间自适应使能。(Adaptive Stretching Data Setup)				
		0: 自适应不使能。由 CLK 设置				
		1:自适应使能。在接收 master 地址时,自动检测 SCL 低电平时间,作为				
3	ASDS	stretching 后数据建立时间。				
		Slave-transmitter,当 STRECH 寄存器设置为有效,且发生 stretching 的情况,在新				
		数据准备好后,salve 会继续拉低 SCL 一段时间,以保证 SDA 线上满足数据建立时				
		间的要求。				
		Clock stretching 使能控制。				
		0:Clock stretching 不使能。				
		1: Clock stretching 使能。				
		(slave 作为 receiver 时,当接收到新数据,但旧数据未被及时读取(RXNE=1):				
2	STRE	SLVSTR 变有效,在返回 ACK 后,将 SCL hold 在低电平,直到旧数据被读取后,把				
	STRE	新数据更新到 RXDATA 中,同时 SLVSTR 变无效,再释放 SCL,开始下一个数据的接				
		收。				
		slave 作为 transmitter 时,当发送结束(TXDONE=1,含接收 ACK/NACK 时间),但				
		新数据未准备好(TXE=1):SLVSTR 变有效,将 SCL hold 在低电平,直到新数据准				
		备好,延迟 SCLL 时间后,SLVSTR 变无效,再释放 SCL,开始新数据的发送。)				
		Master Code Detect Enable.				
		0:不检测 master code。				
1	MCDE	1:检测 master code。				
		本位有效时,slave 在 START 之后检测到 master code,会生成 RXDONE 中断,并				
		件设置 SLVRDS 为 11。软件应保证 slave 地址设置不与 master code 冲突。				
		slave 地址模式控制。				
0	SADDR10	0: 7 位地址模式				
		1: 10 位地址模式				

Slave 地址寄存器 SADDR

寄存器	偏移	类型	复位值	描述
SADDR	0x34	R/W	0x0000_0000	Slave 地址寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
			MASK7				MASK10
15	14	13	12	11	10	9	8
			-			ADD	PR10
				_	_	4	
7	6	5	4	3	2	1	0

位域	名称	描述
31:24	-	-
		Slave 对应地址位掩码。
		0: 不掩码。
23:17	MASK7	1:掩码对应位地址。掩码后,硬件匹配 slave 地址时,忽略被掩码的地址位。
		对于 10 位地址模式,RXDATA 仅保存 ADDR[7:0],所以不支持对 ADDR[9:8]的
		mask。
16	MASK10	Slave 对应地址位掩码。
15:10	-	-
9:8	ADDR10	10 位地址模式:地址 bit9~bit8
7:1	ADDR7	地址 bit7~bit1
0	ADDR0	10 位地址模式:地址 bit0

6.14 SPI 总线控制器 (SPI)

6.14.1 概述

SWM211 系列所有型号 SPI 模块操作均相同,不同型号 SPI 数量可能不同。使用前需使能对应 SPI 模块时钟。

SPI 是一种用于全双工模式的串行同步数据通讯协议。该模块为支持 SPI 通讯协议的接口控制模块,它支持主/从工作模式,并可通过 4 线实现设备的通讯。

SPI 模块支持 SPI 模式及 SSI 模式。SPI 模式下支持 MASTER 模式及 SLAVE 模式。具备深度为 8 的 FIFO, 速率及帧宽度可灵活配置。

除了支持 SPI 协议外,还可支持 SSI 协议,并支持 SPIFLASH 的 4 线快速读操作。

6.14.2 特性

SPI 模式

- 支持主机模式和从机模式
- 支持 SPI 和 SSI 两种帧结构
- 内置深度为 8 的 FIFO, 作为接收和发送数据的缓存
- 数据位数 4~16 位可配置
- 可编程时钟极性和相位
- 支持 LSB 和 MSB 可配置

SPIFLASH 模式

- 仅支持 4 线快速读操作
- Dummy clock 个数可配置
- 读命令可配置

6.14.3 模块结构框图

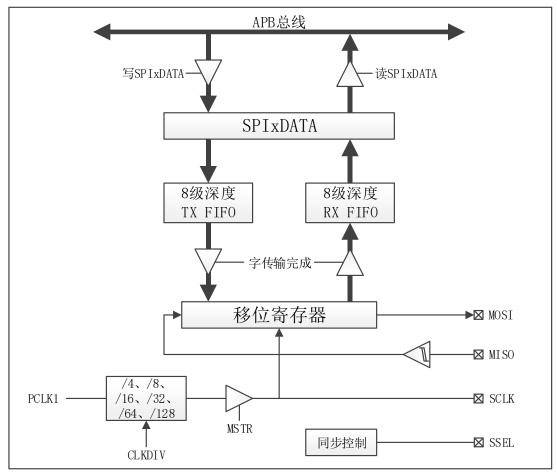


图 6-51 SPI 模块结构框图

6.14.4 功能描述

位速率的产生

SPI 模块包含一个可编程的位速率时钟分频器来生成串行输出时钟。串行位速率通过设置 CTRL 寄存器 FAST、CLKDIV 位对输入时钟进行分频来获得。分频值的范围为 2~512 分频值。计算公式如下 F_{sclk out} = F_{PCLK1}/SCKDIV。

SPI CLK 最高支持 30MHz 时钟, 时钟频率 60MHz 以下, 支持 2 分频; 60MHz 以上, 则需 4 分频。

帧宽度

使能 SPI 模块前,可通过设置 CTRL 寄存器 SIZE 位选择数据帧长度,支持 $4\sim16$ 位。设置该寄存器位时,需保证 SPI 处于关闭状态。

SPI 模式

使能 SPI 模块前,可通过设置 CTRL 寄存器中 FFS 位域选择为 SPI 模式。此时,可通过 CTRL 寄存器中 CPOL 和 CPHA 配置 SPI 模块时钟空闲状态极性与数据采样时间点。

当 CPOL=0, CPHA=0 时,时钟空闲状态为低电平,起始采样点为时钟上升沿。

当 CPOL=0, CPHA=1 时,时钟空闲状态为低电平,起始采样点为时钟下降沿。

当 CPOL=1, CPHA=0 时,时钟空闲状态为高电平,起始采样点为时钟下降沿。

当 CPOL=1, CPHA=1 时,时钟空闲状态为高电平,起始采样点为时钟上升沿。

输出波形如图 6-52 SPI 模式波形图所示:

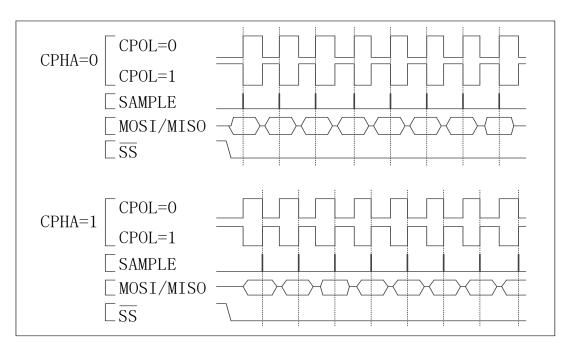


图 6-52 SPI 模式波形图

所有模式下, 片选线均为发送一个数据后自动拉高, 第二个数据再次拉低, 因此当需要使用连续 片选时, 需使用 GPIO 模拟片选线。

SSI 模式

可通过设置 CTRL 寄存器中 FFS 位选择输出模式, 当选择 SSI 模式时, 单次输出波形如图 6-53 所示:

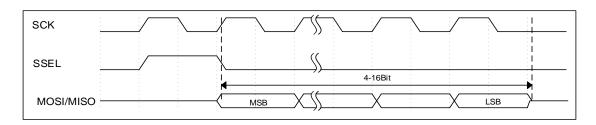


图 6-53 SSI 模式单次输出波

连续输出波形如图 6-54 所示:

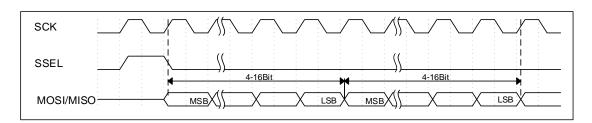


图 6-54 SSI 模式连续输出波形

SPIFLASH 模式

SPIFLASH 读支持 Standard SPI 模式和 Quad SPI 模式,写支持 Quad SPI。

SPIFLASH 4 线模式只支持读操作,且 Dummy clock 个数以及读命令均可配置。其帧格式如图 6-55 所示:

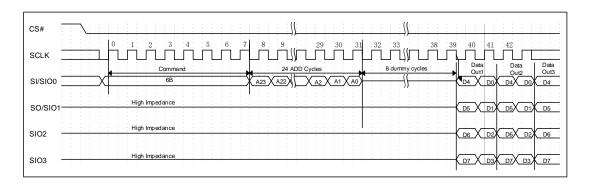


图 6-55 SPIFLASH 四线读帧格式

SPIFLASH 外部连接示意图如图 6-56 所示:

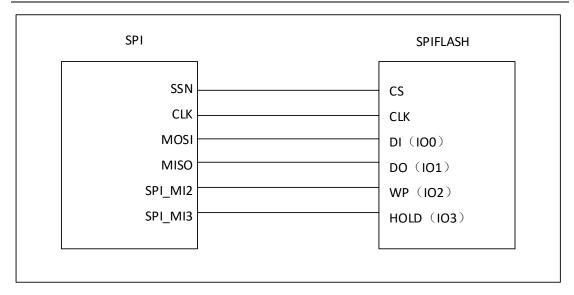


图 6-56 SPIFALSH 四线模式外部连接图

主设备操作

当 SPI 模块作为主模块工作时,操作流程如下:

- 通过 CTRL 寄存器 CLKDIV 位定义串行时钟波特率
- 设置 CTRL 寄存器 SIZE 位来选择数据位数
- 选择 CTRL 寄存器 CPOL 和 CPHA 位,定义数据传输和串行时钟间的相位关系。主、从设备的 CPOL 和 CPHA 位必须一致
- 配置 CTRL 寄存器 FFS 位定义数据帧格式,主、从设备的数据帧格式必须一致。
- 设置 CTRL 寄存器 MSTR 位为主模式
- 使能 CTRL 寄存器 EN 位

在主设备配置中, MOSI 引脚是数据输出, 而 MISO 引脚是数据输入。

注: 当选择硬件提供的 CS 引脚作为从设备片选使能时,每传输一个字节的数据, CS 引脚均会变高。因此,当从设备需要连续拉低的片选信号时,需要使用 GPIO 模拟 CS 信号。

从设备操作

在从模式下, SCK 引脚用于接收从主设备来的串行时钟。对 CTRL 寄存器中 CLKDIV 的设置不影响数据传输速率。

操作流程:

- 设置 CTRL 寄存器 SIZE 位来定义数据位数选择。
- 选择 CTRL 寄存器 CPOL 和 CPHA 位,与主设备一致。
- 配置 CTRL 寄存器 FFS 位定义数据帧格式。

● 设置 CTRL 寄存器 MSTR 位为从模式

在从设备配置中, MOSI 引脚是数据输入, MISO 引脚是数据输出。

FIFO 操作

发送 FIFO

通用发送 FIFO 是一个 32 位宽、8 单元深、先进先出的存储缓冲区。通过写 DATA 寄存器来将数据写入发送 FIFO,数据在由发送逻辑读出之前一直保存在发送 FIFO 中。并行数据在进行串行转换并通过 MOSI 管脚分别发送到相关的从机之前先写入发送 FIFO。

接收 FIFO

通用接收 FIFO 是一个 32 位宽、8 单元深、先进先出的存储缓冲区。从串行接口接收到的数据在读出之前一直保存在缓冲区中,通过读 DATA 寄存器来访问读 FIFO。从 MISO 管脚接收到的串行数据在分别并行加载到相关的主机接收 FIFO 之前先进行记录。

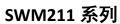
可通过中断使能寄存器 IE、中断状态寄存器 IF、状态寄存器 STAT 对 FIFO 状态及中断进行查询与控制。

中断配置与清除

可通过配置中断使能寄存器 IE 相应位使能中断。当中断触发后,中断标志寄存器 IF 对应位置 1。如需清除此标志,需在对应标志位中写 1 清零(R/W1C),否则中断在开启状态下会一直进入。

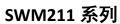
6.14.5 寄存器映射

名称	偏移	类型	复位值	描述
SPI0	BASE: (0x40044000	•	
SPI1	BASE: (0x4004480	0	
CTRL	0x00	R/W	0x009e 1172	SPI 控制寄存器
DATA	0x04	R/W	0x0000 0000	SPI 数据寄存器
STAT	0x08	R/W	0x0001 0006	SPI 状态寄存器
IE	0x0C	R/W	0x0000 0000	SPI 中断使能寄存器
IF	0x10	R/W1C	0x0000 0000	SPI 中断状态寄存器
SPIFLASHCR	0x20	R/W	0x0000 0007	SPIFLASH 控制寄存器
SPIFLASHADDR	0x24	R/W	0x0000 0007	SPIFLASH 地址配置寄存器


6.14.6 寄存器描述

控制寄存器 CTRL

寄存器	偏移	类型	复位值	描述
CTRL	0x00	R/W	0x009e 1172	SPI 控制寄存器


31	30	29	28	27	26	25	24
	-	INNOSPL	LSBF		-	TFCLR	RFCLR
23	22	21	20	19	18	17	16
	TFTHR		RFTHR			SSN	FILTE
15	14	13	12	11	10	9	8
DMARXEN	DMARXEN DMATXEN FA		MSTR	FI	FS	CPOL	СРНА
7	6	5	4	3	2	1	0
	SIZE					CLKDIV	

位域	名称	描述
31:30	-	-
		輸入信号不进行采样控制
		0:输入信号处理方式 FILTE 寄存器来控制
20	INNOSPL	1: 输入信号不进行任何采样
29	INNOSPL	注:若不进行采样,则输入信号直接进行电路进行工作,可最大化的提高传输速
		率,但会降低可靠性。该为有效后,SPI 的传输速率在理论上无论主从模式全双工
		还是单工,最大的传输速率可达到 pclk1 的 2 分频。
		LSB 配置寄存器
		1: 数据按照 LSB 发送(发送时, TX 寄存器数据的 bit0 位会首先被发出;接收时,
28	LSBF	接收的第一个 bit 数据会放到 RX 寄存器的 bit0 位)
20	LJDF	0:数据按照 MSB 发送(发送时,TX 寄存器数据的最高位会首先被发出;接收
		时,接收的第一个 bit 数据会放到 RX 寄存器的最高位)
		注:不适用于 SPIFLASH 模式
27:26	-	-
		发送 FIFO 清除控制位
25	TFCLR	1: 发送 FIFO 清除有效
		0:发送 FIFO 清除无效
		接收 FIFO 清除控制位
24	RFCLR	1:接收 FIFO 清除有效
		0:接收 FIFO 清除无效

		SANIAISTI がい
		发送 FIFO 达到设置水位后产生中断配置位
		000: 发送 FIFO 中最多有 0 个数据
		001: 发送 FIFO 中最多有 1 个数据
		010: 发送 FIFO 中最多有 2 个数据
23:21	TFTHR	011: 发送 FIFO 中最多有 3 个数据
		100: 发送 FIFO 中最多有 4 个数据
		101: 发送 FIFO 中最多有 5 个数据
		110: 发送 FIFO 中最多有 6 个数据
		111: 发送 FIFO 中最多有 7 个数据
		接收 FIFO 达到设置水位后会产生中断配置位
		000:接收 FIFO 中至少有 1 个数据
		001:接收 FIFO 中至少有 2 个数据
		010:接收 FIFO 中至少有 3 个数据
20:18	RFTHR	011:接收 FIFO 中至少有 4 个数据
		100:接收 FIFO 中至少有 5 个数据
		101:接收 FIFO 中至少有 6 个数据
		110:接收 FIFO 中至少有 7 个数据
		111:接收 FIFO 中至少有 8 个数据
		SSN 在传输过程中是否出现控制位。(在数据帧为 SPI 模式下,并且配置主模式工
17	SSN	作时,通过该位可控制在传输过程中每帧数据之间是否需要 SSN 拉高)
	5514	0:传输过程中 SSN 始终为 0
		1: 传输过程中每一帧数据之间会将 SSN 至少拉高 0.5 个 SCK 周期
		输入信号去抖控制
16	FILTE	0: 对输入信号不进行去抖操作
		1: 对输入信号进行去抖操作
		DAM 读 FIFO 使能
15	DMARXEN	1:通过 DMA 读 FIFO
		0: 通过 MCU 读 FIFO
		DAM 写 FIFO 使能
14	DMATXEN	1: 通过 DMA 写 FIFO
		0:通过 MCU 写 FIFO
		快速模式选择
13	FAST	1: SPI 的 SCLK 为 pclk1 的 2 分频
		0: SPI 的 SCLK 由 CLKDIV 控制
		注: 仅适用于 SPI 模式
		主从模式选择
12	MSTR	1: SPI 系统配置为主器件模式
		0: SPI 系统配置为从器件模式

		SVVIVIZII 列ウリ
		数据帧格式选择
		00:SPI 模式
11:10	FFS	01: SSI 模式
		10: 保留
		11: SPI FLASH 模式
		时钟极性选择
	CDOL	0 = 串行时钟空闲状态为低电平,有效电平为高电平
9	CPOL	1 = 串行时钟空闲状态为高电平,有效电平为低电平
		注:仅适用于 SPI 模式
		时钟相位选择
	CDUA	0 = 在串行时钟的第一个跳变沿采样数据
8	СРНА	1 = 在串行时钟的第二个跳变沿采样数据
		注:仅适用于 SPI 模式
		数据位数选择
		0000: 保留
		0001: 保留
		0010: 保留
		0011: 4bit 数据
		0100: 5bit 数据
		0101: 6bit 数据
		0110: 7bit 数据
	0.75	0111: 8bit 数据
7:4	SIZE	1000: 9bit 数据
		1001: 10bit 数据
		1010: 11bit 数据
		1011: 12bit 数据
		1100: 13bit 数据
		1101: 14bit 数据
		1110: 15bit 数据
		1111: 16bit 数据
		注:仅适用于 SPI 模式
		SPI 使能位
		0: 禁止
	EN.	1: 使能
3	EN	注 1:仅适用于 SPI 模式
		注 2:该寄存器使能后,若在主模式下,当发送 FIFO 有数据时则开始启动数据帧
		传输;在从模式下,等待数据帧传输
	•	•

SWM211 系列

		波特率选择
		000:PCLK1 4 分频
		001: PCLK1 8 分频
		010:PCLK1 16 分频
2:0	CLKDIV	011: PCLK1 32 分频
2:0		100:PCLK1 64 分频
		101:PCLK1 128 分频
		110:PCLK1 256 分频
		111: PCLK1 512 分频
		注: 仅适用于 SPI 模式

数据寄存器 DATA

寄存器	偏移	类型	复位值	描述
DATA	0x04	R/W	0x0000 0000	SPI 数据寄存器

31	30	29	28	27	26	25	24	
	DATA							
23	22	21	20	19	18	17	16	
			DA	ATA				
15	14	13	12	11	10	9	8	
			DA	ATA				
7	6	5	4	3	2	1	0	
	DATA							

位域	名称	描述				
		SPI 接收/发送数据寄存器				
		读操作从接收 FIFO 中读出接收到的数据				
31:0	DATA	写操作将数据写入发送 FIFO 中				
		注:若数据不是 32bit,则按照右对齐进行排列,高位不关心。				

状态寄存器 STAT

寄存器	偏移	类型	复位值	描述
STAT	0x08	R/W	0x0001 0006	SPI 状态寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
BUSY -				RFLVL		TFLVL	
6031		-			KFLVL		IILVL
7	6	5	4	3	2	1	0

位域	名称	描述						
31:16	_	-						
		SPI 传输忙标志位						
4-	BUSY	0:表示 SPI 未进行传输						
15	RO2A	1:表示 SPI 正在进行传输						
		注:仅适用于 SPI 模式						
14:12	-							
		接收 FIFO 数据深度位标志,RO						
		000:RFF 为 1 时,表示 FIFO 内有 8 组数据						
		RFF 为 0 时,表示 FIFO 内没有数据;						
		001:表示 FIFO 内有 1 组数据;						
11.0	DELV4	010:表示 FIFO 内有 2 组数据;						
11:9	RFLVL	011:表示 FIFO 内有 3 组数据;						
		100:表示 FIFO 内有 4 组数据;						
		101:表示 FIFO 内有 5 组数据;						
		110:表示 FIFO 内有 6 组数据;						
		111:表示 FIFO 内有 7 组数据;						
		发送 FIFO 数据深度位标志,RO						
		000: TFNF 为 0 时,表示 FIFO 内有 8 组数据						
		TFNF 为 1 时,表示 FIFO 内没有数据;						
		001:表示 FIFO 内有 1 组数据;						
8:6	TFLVL	010:表示 FIFO 内有 2 组数据;						
8:0	IFLVL	011:表示 FIFO 内有 3 组数据;						
		100:表示 FIFO 内有 4 组数据;						
		101:表示 FIFO 内有 5 组数据;						
		110:表示 FIFO 内有 6 组数据;						
		111:表示 FIFO 内有 7 组数据;						

SWM211 系列

		接收 FIFO 溢出标志,软件清零,写清零
5	RFOV	0: 没溢出
		1: 溢出
		接收 FIFO 满标志
4	RFF	0: 非满
		1: 满
		接收 FIFO 非空标志
3	RFNE	0: 空
		1: 非空
		发送 FIFO 非满标志
2	TFNF	0: 满
		1: 非满
		发送 FIFO 空标志
1	TFE	0: 非空
		1: 호
		SPI 数据帧传输结束标志
	WTC	每次数据帧传输结束后,该标志会被置位。
U	VV IC	软件清零,写 1 清零。
		注: 仅适用于 SPI 模式

中断使能寄存器 IE

寄存器	偏移	类型	复位值	描述
IE	0x0C	R/W	0x0000 0000	SPI 中断使能寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
	-			CSRISE	CSFALL	WTC	FTC
7	6	5	4	3	2	1	0
-	TFTHR	RFTHR	TFHF	TFE	RFHF	RFF	RFOV

位域	名称	描述
31:112	-	-
		从机模式下,SSN 信号上升沿检测中断使能
11	CSRISE	1: 使能
		0: 不使能
		从机模式下,SSN 信号下降沿检测中断使能
10	CSFALL	1: 使能
		0: 不使能
		SPI 传输结束中断使能
9	WTC	1: 使能
		0: 不使能
		SPI 数据帧传输结束中断使能
8	FTC	1: 使能
		0: 不使能
7	-	-
		发送 FIFO 达到设定水位中断使能
6	TFTHR	1: 使能
		0: 不使能
		接收 FIFO 达到设定水位中断使能
5	RFTHR	1: 使能
		0: 不使能
		发送 FIFO 半满使能
4	TFHF	1: 使能
		0: 不使能
		发送 FIFO 空中断使能
3	TFE	1: 使能
		0: 不使能

SWM211 系列

		接收 FIFO 半满使能
2	RFHF	1: 使能
		0: 不使能
		接收 FIFO 满中断使能
1	RFF	1: 使能
		0: 不使能
		接收 FIFO 溢出中断使能
0	RFOV	1: 使能
		0: 不使能

中断状态寄存器 IF

寄存器	偏移	类型	复位值	描述
IF	0x10	R/W1C	0x0000 0000	SPI 中断状态寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
			-			WTC	FTC
7	6	5	4	3	2	WTC 1	FTC 0

位域	名称	描述
31:12	-	-
		从机模式 SSN 上升沿中断,写 1 清中断
11		1: 中断
		0: 未中断
		从机模式 SSN 下降沿中断,写 1 清中断
10		1: 中断
		0: 未中断
		SPI 传输结束中断标志,写 1 清中断
9	wtc	1: 中断
		0: 未中断
		SPI 数据帧传输结束中断标志,写 1 清中断
8	FTC	1: 中断
		0: 未中断
7	-	-
		发送 FIFO 达到设定水位中断标志,写 1 清中断
6	TFTHR	1: 中断
		0: 未中断
		接收 FIFO 达到设定水位中断标志,写 1 清中断
5	RFTHR	1: 中断
		0: 未中断
		发送 FIFO 半满中断标志,写 1 清中断
4	TFHF	1: 中断
		0: 未中断
		发送 FIFO 空中断标志,写 1 清中断
3	TFE	1: 中断
		0: 未中断

SWM211 <u>系列</u>

		接收 FIFO 半满中断标志,写 1 清中断
2	RFHF	1: 中断
		0: 未中断
		接收 FIFO 满中断标志,写 1 清中断
1	RFF	1: 中断
		0: 未中断
		接收 FIFO 溢出中断标志,写 1 清中断
0	RFOVF	1: 中断
		0: 未中断

SPIFLASH 控制寄存器 SPIFLASHCR(仅在 SPI FLASH 模式下有效)

寄存器	偏移	类型	复位值	描述
SPIFLASHCR	0x20	R/W	0x0000 0007	SPIFLASH 控制寄存器

31	30	29	28	27	26	25	24
			-	-			
23	22	21	20	19	18	17	16
	-	-				-	
15	14	13	12	11	10	9	8
			-	-			
7	6	5	4	3	2	1	0
	-		SPIFLASHEN		DUMMY	CLKNUM	

位域	名称	描述
31:20	-	-
19:8		所需接收字节数据配置寄存器
19:8	REVDATANUM	待接收(REV_DATA_NUM+1)个数据
7:5	-	-
		SPIFLASH 使能控制位
4	SPIFLASHEN	0: 禁止
		1: 使能
2.0	DUMMYCLKNUM	dummy clk 数量配置寄存器
3:0		DUMMY CLK= DUMMY_CLK_NUM+1

SPIFLASH 地址配置寄存器 SPIFLASHADDR(仅在 SPI FLASH 模式下有效)

寄存器	偏移	类型	复位值	描述
SPIFLASHADDR	0x24	R/W	0x0000 0007	SPIFLASH 地址配置寄存器

31	30	29	28	27	26	25	24	
	SPIFLASHADDR							
23	22	21	20	19	18	17	16	
	SPIFLASHADDR							
15	14	13	12	11	10	9	8	
	SPIFLASHADDR							
7	6	5	4	3	2	1	0	
	SPIFLASHADDR							

位域	名称	描述
31:0	SPIFLASHADDR	SPIFLASH 地址

6.15 脉冲宽度调制 (PWM) 发生器

6.15.1 概述

SWM211 系列所有型号 PWM 操作均相同,不同型号 PWM 通道数可能不同。使用前需使能 PWM 模块时钟。

PWM 模块用于实现芯片输出特定的方波, 控制外部元器件, 如步进电机等。计数器可以通过 APB 总线读写寄存器、和外部硬件同时控制, 实现计数过程的控制。同时, CPU 和外部硬件也可以共同实现对输出 PWM 信号的控制。

PWM 模块提供了 2 组(PWM0、PMW1)、8 路(PWM0A、PWM0B、PWM0AN、PWM0BN、PWM1A、PWM1B、PWM1AN、PWM1BN)独立通道,支持边沿模式、中心对称模式。

中心对称模式下,输出是互补输出。如 PWM0A 驱动 PWM0A 和 PWM0AN 两个输出信号,两个信号周期相等、电平值相反,且可设置死区。

6.15.2 特性

- 2 组 16 位宽 PWM 控制,每组 PWM 支持 4 路 PWM 输出(A/AN/B/BN 路),最多可产生 8 路 PWM 信号
- 支持 10 位预分频计数器,一个位宽为 10 位的预分频计数器
- 每组 PWM 支持 4 个翻转点(非对称中心对齐模式下,每路输出支持 2 个翻转点,其他情况下每路支持 1 个翻转点)
- 支持 CPU 和外部信号两个控制源,同时控制计数器的启动、停止、输出 MASK、配置更 新四种操作,同时外部信号还可以控制计数器的暂停操作
- 提供新周期开始中断,高电平结束中断、刹车中断以及中心对称模式下的半周期中断
- 最多支持 7 路外部信号控制源和 3 路外部 HALT 信号, 支持对低 4 路外部信号和 3 路外部 HALT 信号进行滤波功能, 支持不滤波、过滤 4/8/16pclk 宽度四种配置
- 支持 PWM 计数周期、翻转周期、死区值、trigger 值的动态配置,先发起更新请求,并 在周期溢出时完成更新
- 支持输出两种类型的触发信号, 计数器比较匹配触发和计数器溢出触发
- 可选择初始输出电平选择
- PWM 输出的固定值可配
- PWM 空闲状态下的输出可配
- 支持刹车功能
- 支持硬件自动触发 ADC 采样

6.15.3 模块结构框图

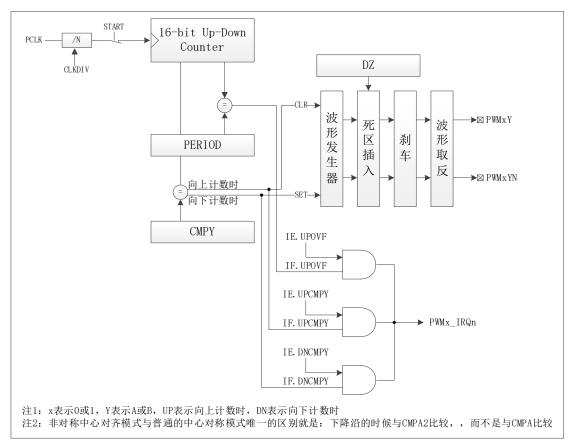


图 6-57 PWM 模块结构框图

6.15.4 功能描述

时钟分频

通过 CRx 寄存器 CLKSRC 和 CLKDIV 位,可进行 PWM 工作时钟频率配置,支持工作时钟的分频范围为系统时钟的 1-1024 倍。

死区保护

PWM 输出时 Dead Zone(死区)的作用是在电平翻转时插入一个时间间隔,避免关闭前一个设备和打开后一个设备时,因为开关速度的问题,出现同时开启状态而增加负荷的情况(在没有彻底关闭前打开了后一个设备),尤其是电流过大时容易造成短路等损坏设备。

此 PWM 模块每一路 PWM 的死区都独立配置,在独立模式和中心对称模式下均可配。效果为将上升沿推后指定周期。

当高电平周期设置为全 0 或者等于周期数,即占空比设置为 0 或 100 时,死区设置失效,此时输出电平为全低或全高。

死区示意图如图 6-58 所示:

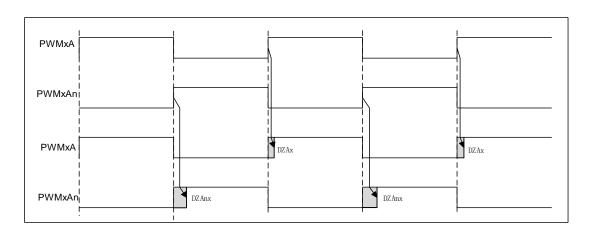


图 6-58 PWM 死区示意图

计数器的启动与停止

边沿对齐模式

向上计数时,如图 6-59 示意图中如果 IDLEAN 为低,则需要插入死区,否则无死区。

START 信号为上升沿触发,立即生效(系统时钟)。

STOP 信号为高电平期间停止,低电平期间继续计数,立即生效(系统时钟)。

如图 6-59 所示:

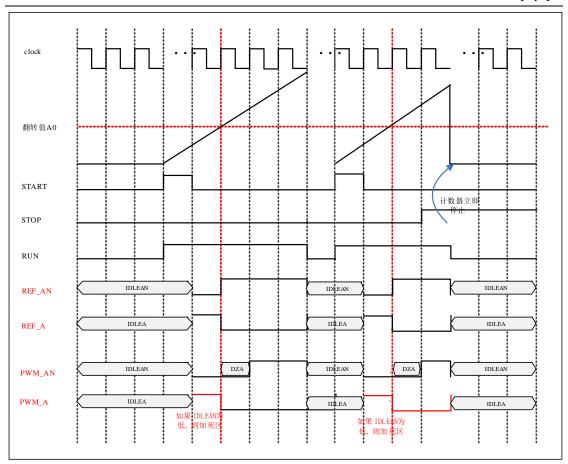


图 6-59 边沿对齐模式下向上计数时计数器启动与停止波形

向下计数时,如图 6-60 所示,如果 IDLEA 为低,则需要插入死区,否则无死区。

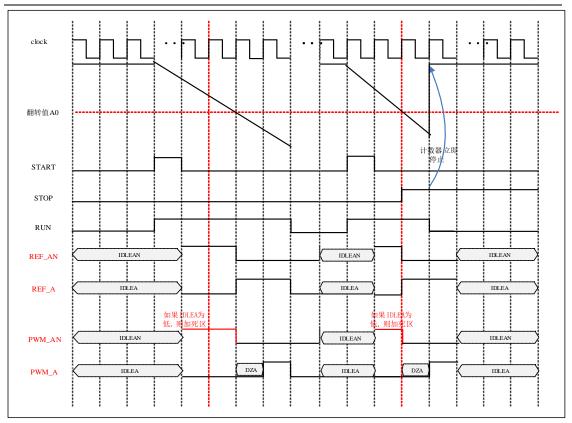
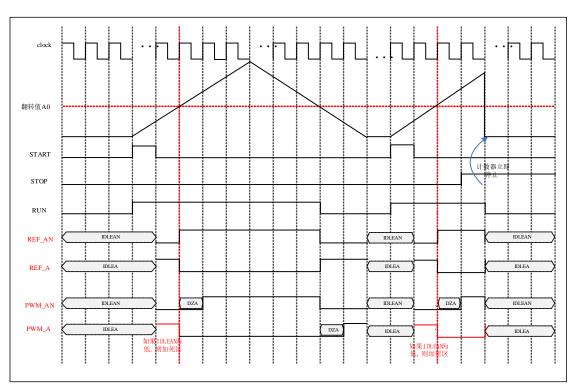



图 6-60 边沿对齐模式下向下计数时计数器启动与停止波形

中心对齐模式

波形如图 6-61 所示:

图 6-61 中心对齐模式下计数器启动与停止波形

非对称中心对齐模式

波形如图 6-62 所示:

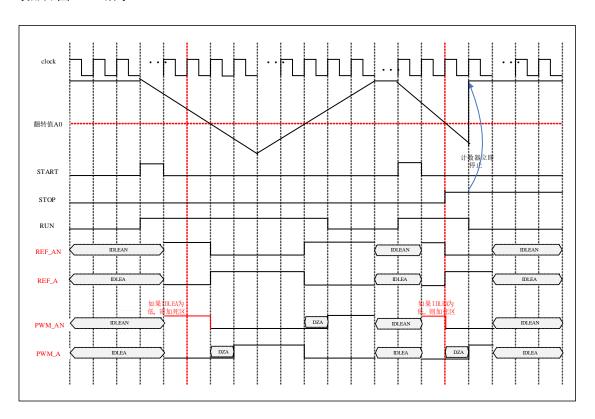


图 6-62 非对称中心对齐模式下计数器启动与停止波形

计数器计数过程

边沿对齐模式

波形如图 6-63 所示:

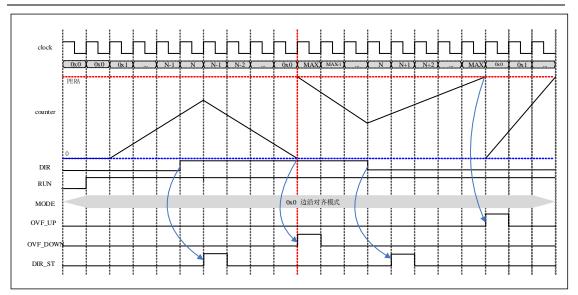


图 6-63 边沿对齐模式下计数器计数过程波形

中心对称模式

波形如图 6-64 所示:

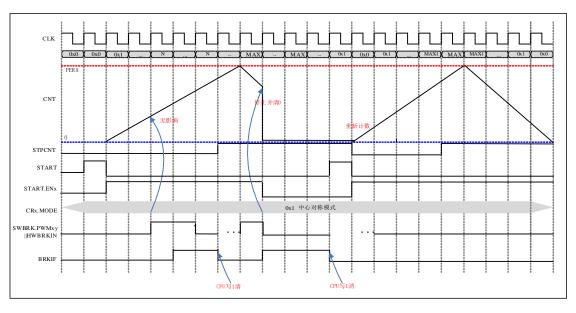


图 6-64 中心对称模式下计数器计数过程波形

PWM 外部信号配置说明

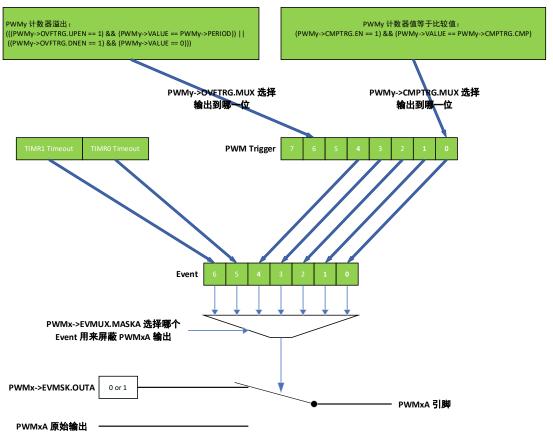


图 6-65 PWM 外部信号配置

注: ext_event[0~4]分别接 PWM_EVTO~4, ext_event[5~6]分别接 TIMERO~1

硬件刹车控制和软件刹车控制

刹车功能可以控制 x 组 y 路 PWM 在 BRK 过程中输出电平的值,可以通过配置 BRKCRx 寄存器配置。

刹车功能同时可以控制在 BRK 过程中计数器是否停止计数。可通过配置 BRKCRx 寄存器 STPCNT 位配置在刹车过程中计数器是否继续计数或停止计数并清零。

刹车功能也可以控制在 BRK 信号撤销后 PWM 信号是否立即变为原始信号或刹车 BRK 的值直到 当前计数周期溢出,PWM 的信号才会跟随原始信号进行翻转。可通过配置 BRKCRx 寄存器 OFFA/OFFB 位分别配置 A 路信号和 B 路信号。

硬件刹车控制和软件刹车控制计数器计数波形如图 6-66 所示:

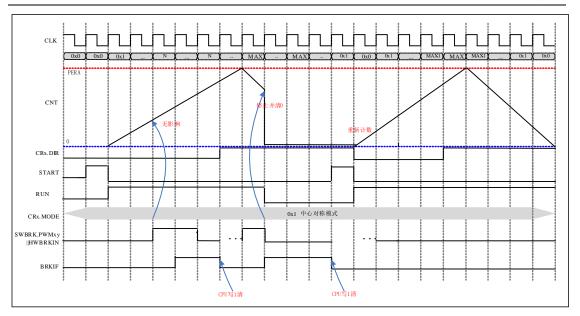


图 6-66 硬件刹车控制和软件刹车控制计数器计数情况

BRK 过程并不会影响计数器的周期数、对比值等内容,仅仅控制计数器是否完成一次重新启动。

计数器重载

RELOAD 信号为上升沿触发,不立即生效,需等到计数器溢出后生效。

计数器的 RELOAD (重载)动作包含三个源头:由 START 动作引起、由主动 CPU 发起、由外部信号发起。

- 由 START 动作引起: CPU 通过软件或硬件发起一次计数启动(START 动作)时,完成自动 重载。当计数器第一次启动或计数器从 IDLE 状态被重新启动时,都会在进入 ACTIVE 状态之后,自动完成重载动作。
- 由主动 CPU 发起: CPU 通过写 RELOAD 寄存器
 - A: 当 CPU 配置 RELOAD_EN 有效时,每当 RPT_CNTER 计到 0 且计数器溢出时,都会完成一次自动重载,即周期性的自动重载
 - B: 当 CPU 配置 RESTART_PWMX 为 1 时,计数器会自动完成一次重载+重新启动的动作,即立即重载
- 外部信号发起: 当发生 EVMUXx 寄存器中 RELOAD 所配置的 ext_event[x]信号(ext_event 上升沿),且 RELOAD_EN 有效时,计数器也会自动完成一次重载+重新启动动作,与 CPU 发起的立即重载类似

可通过配置 IEx 寄存器 RELOADEN 位配置计数器重载中断使能,IFx 寄存器查看重载状态,此状态位为写 1 清零。

如图 6-67 所示:

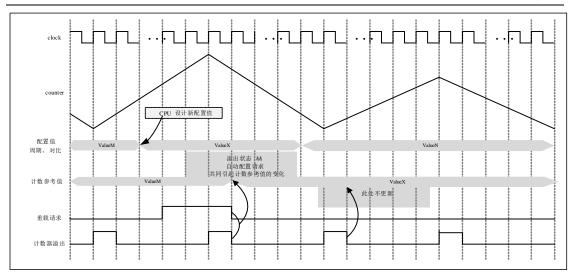


图 6-67 计数器重载波形

注: ext_event 为计数器硬件触发信号,可以完成如下操作:

- (1) 计数器启动,上升沿启动
- (2) 计数器停止,高电平时停止,可以配置为停止到当前值,还是初始值(向上计数情况下,初始值是0,向下计数情况下,初始值是PERIOD)
- (3) 计数器暂停,高电平期间暂停,低电平期间正常计数
- (4) 寄存器 REALOAD, 上升沿触发, 在当前周期溢出时完成 RELOAD 动作
- (5)输出 MASK,低电平期间 PWM 正常输出,高电平期间 PWM 被 MASK 到指定值

PWM 移相

在使用移相功能时,我们通常使用重启 PWM 来实现。

如在 PWMx 计数到周期六分之一时,对 PWMx 执行一次 RESTERT, PWMx 将从重新计数,及波形延迟了 360/60 度相位。

波形示意图如图 6-68 所示:

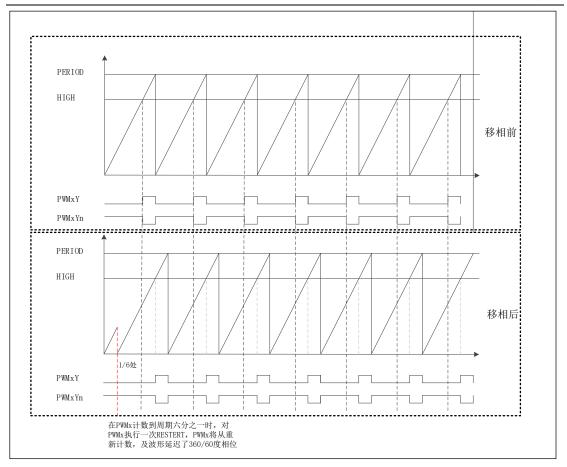


图 6-68 PWM 移相示意图

PWM 信号产生波形

以 A 路信号为例说明:

边沿对齐模式:

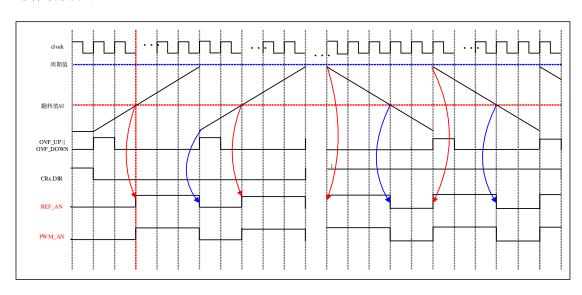


图 6-69 边沿对齐模式下 PWM 信号产生波形

中心对齐模式:

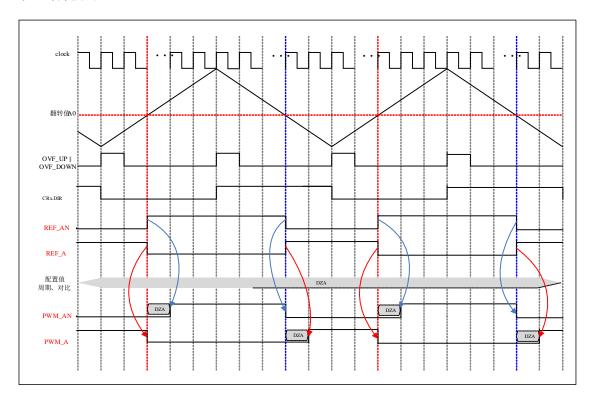


图 6-70 中心对齐模式下 PWM 信号产生波形

非对称中心对齐模式:

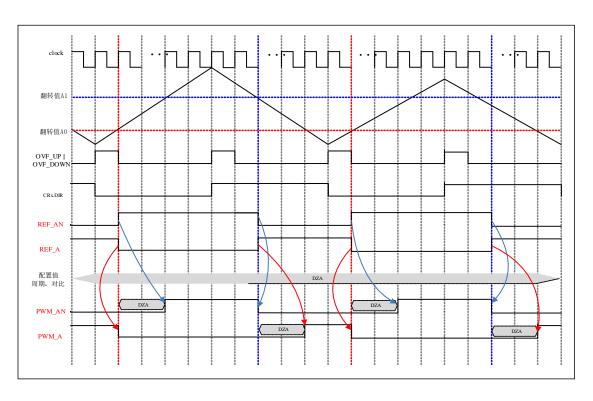


图 6-71 非对称中心对齐模式下 PWM 信号产生波形

BRK 情况下中心对齐模式:

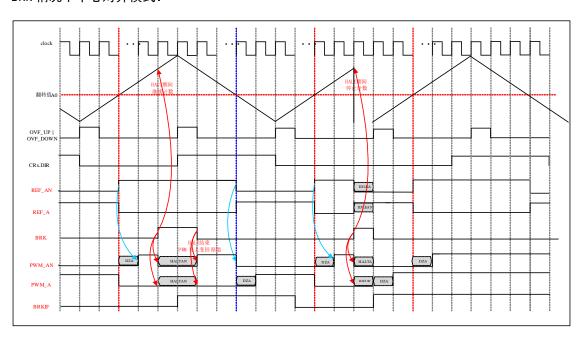


图 6-72 BRK 中心对齐模式下 PWM 信号产生波形

TRIGGER 控制

PWM 模块在计数过程中,可以根据配置输出三种 trigger 信号:

PWM 计数器比较匹配触发:

PWM 计数器在计数过程中,当计到 TRIG_CNT 中配置的参考值时,就会产生一个周期的 trig 信号。根据配置,可以将该 trig 信息映射到输出的 trig[7:0]信号上,且输出宽度可以配置,以 4 个计数周期为单位进行设置,最小长度为 0 个(即不输出 PWM_TRIG, 只输出 ADC_TRIG),最大长度为 252 个计数

当重复计数功能有效时, trig 信号会在最后一次重复计数时产生。

ADC 触发:

在 PWM_TRIG 输出宽度的正中间,会输出一个 pclk 的 ADC_TRIG 信号,用于触发 ADC 采样。

PWM 计数器溢出触发:

当计数器溢出 TRIG 使能,且计数器发生向上溢出或向下溢出时,会产生一个 pclk 周期的 TRIG 信号,与自定义 TRIG 一致,可以根据配置将该 trig 信息映射到输出的 trig[7:0]信号上。

TRIGGER 控制波形如图 6-73 所示:

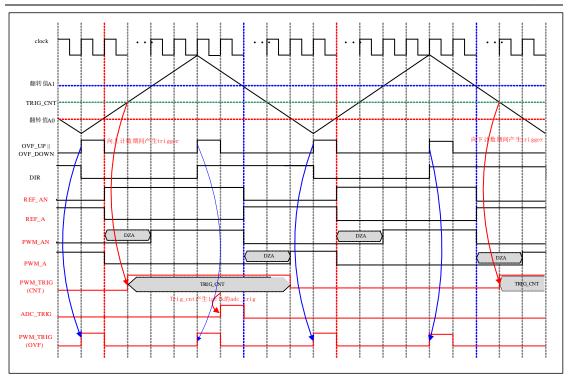


图 6-73 TRIGGER 控制波形

重复计数功能

重复计数器主要用于控制寄存器 RELOAD 的时机,在周期性自动重载情况下,只有当重复计数器计为 0,且计数器溢出时,才会完成重载动作。

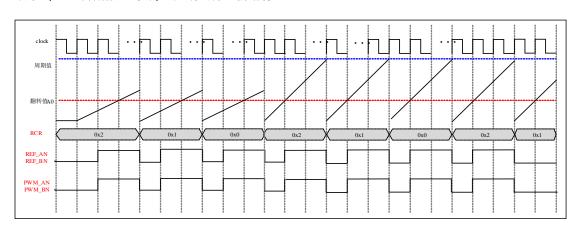


图 6-74 重复计数功能波形图

触发 SAR ADC 采样

PWM 在任意模式下可以触发 ADC,每一路输出独立的 ADC 触发信号,且每个周期可以设置 1 个 ADC 触发点,每个 PWM 只输出一个触发信号,不区分 A.B 分别触发。

将 SAR ADC 配置寄存器 (CTRL) 中 TRIG 方式设置为 PWM 触发。每路 PWM 对应 1 个 ADTRG 值, 当 PWM 计数到指定值,可触发 ADC 进行采样。

另外, 当使用 PWM 触发 ADC 时,需将 CPU 触发通道值与 PWM 通道触发通道值一致才能触发 ADC,即 ADC->CHSEL.SW 和 ADC->CHSEL.PWM 的值必须一样,PWM 触发 ADC 才有效。

具体配置方式如下:

- 配置 PWMx 路触发 ADC 控制寄存器,设置触发点是否有效以及 PWM 触发 ADC 时间点。
- 配置 ADC 的触发方式为 PWM 触发
- 使能 PWM 模块 EN 位,当计数值到达 MATCH 设置值时,触发 ADC 配置寄存器(CTRL)中选中的通道(CHx)进行采样,采样完成后,将产生 EOC 标志位,并产生 ADC 中断

示意图如图 6-75 所示:

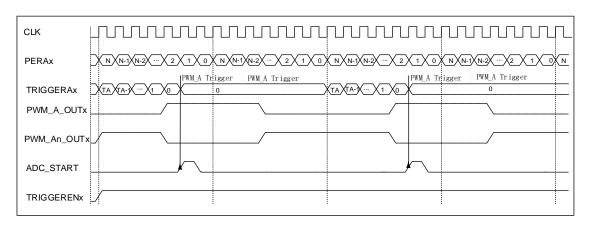


图 6-75 PWM 触发 ADC 采样示意图

电平翻转

PWM 模块支持电平翻转,可通过配置 OUTCRx 寄存器中 INVA 和 INVB 位,分别对应 A 通道和 B 通道。

如图 6-76 所示:

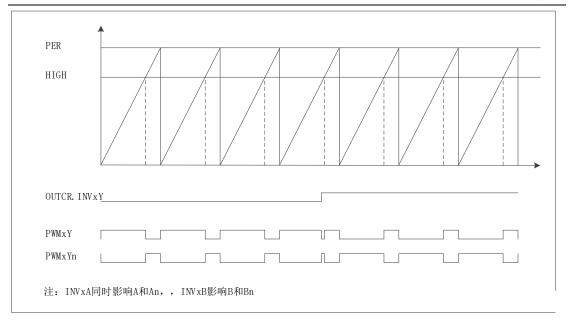


图 6-76 电平翻转示意图

挖坑及 ADC 触发功能

挖坑功能指的是外部信号在高/低电平期间输出被 MASK 到指定电平,也就是我们下面提到的 MASK 功能。

当 MASK 被使能之后,MASK_A/AN/B/BN 有效期间,PWM 输出被 MASK 到的值。MASK 无效期间,PWM_A/AN/B/BN 输出正常值。

此功能可以在 PWM 波形的任何位置挖坑,挖坑的方向可以是向上、也可以是向下,且 A 和 AN 的挖坑方向是可独立配置的。

MASK 配置对所有的 A/B/AN/BN 路同时有效。

PWM 输出可以配置为对 MASK 信号立即生效,还是在原始信号下一次翻转时生效。

可以在 PWM MASK_A/AN/B/BN 有效期间,通过配置 CMPTRGx 寄存器中 ATP 位选择 ADC_TRIG 信号产生时机,可以在 pwm_trig 信号产生的同时, 1/8, 2/8······7/8 等时间点生成一个系统时钟的 adc_trig 信号

- 在中心对齐模式下,通过配置 CMPTRGx 寄存器中 DIR 位,选择向上/向下计数过程中产生 TRIG 信号。
- 通过配置 CMPTRGx 寄存器中 WIDTH 位,设置 Trigger 计数器产生的匹配信号输出宽度,范围为 0-252 个计数时钟长度

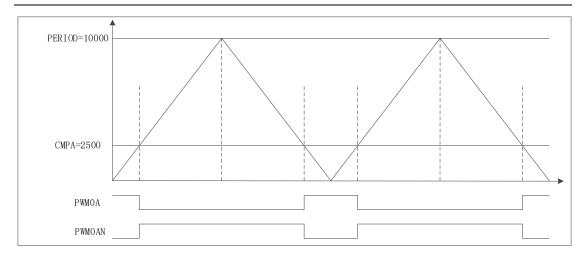


图 6-77 挖坑前波形

如图 6-78 所示, 设置在 PWM0 计数器等于 1500 处在波形上挖两个电平为零的坑, 并在坑的 3/8 宽度位置启动 ADC。

PWM_CmpTrigger(PWM0, 1500, PWM_DIR_UP, 50, PWM_TRG_1, 3), 此语句为设置 PWM0 向上计数, 计数值等于 1500 时发出一个触发信号, 触发信号发送到 trigger1。

PWM_OutMask(PWM0, PWM_CH_A, PWM_EVT_1, 0, PWM_EVT_1, 0), 词语为设置 PWM0A 和 PWM0AN 在 event1 为高时分别输出 0 和 0。

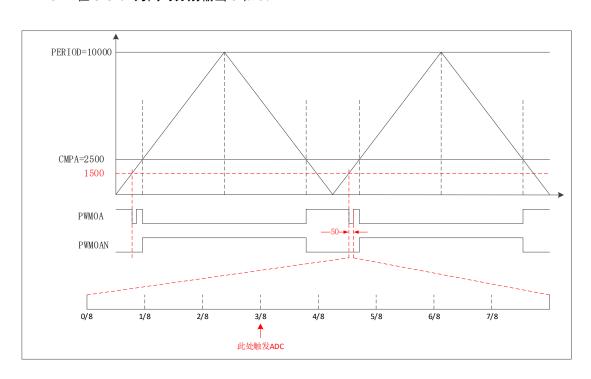
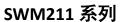


图 6-78 挖坑后波形

6.15.5 寄存器映射

名称	偏移	类型	复位值	描述
PWM0	BASE:	0x40046000	•	
PWM1	BASE:	0x40046080		
CRx	0x0	R/W	0	第 x 组 PWM 的工作模式控制
OCRx	0x4	R/W	0	第 x 组 PWM 配置控制
BRKCRx	0x8	R/W	0	第 x 组 BRK 控制寄存器
BRKINx	0xC	R/W	0	第 x 组外部 BRK 选择寄存器
PERIODx	0x20	R/W	0	第 x 组 PWM 的周期数
СМРАх	0x24	R/W	0	第 x 组 A 路 PWM 的高电平宽度 0
СМРВх	0x28	R/W	0	第 x 组 B 路 PWM 的高电平宽度 0
DZAx	0x2C	R/W	0	第 x 组 A 路死区长度控制
DZBx	0x30	R/W	0	第 x 组 B 路死区长度控制
	2.24	5 /11/		第 x 组 A 路 PWM 的高电平宽度 1,仅在非对称中心
CMPA2x	0x34	R/W	0	对齐模式下使用
Ct 4DD2		D //4/		第 x 组 B 路 PWM 的高电平宽度 1,仅在非对称中心对
CMPB2x	0x38	R/W	0	齐模式下使用
OVFTRGx	0x50	R/W	0	第 x 组计数器溢出配置
CMPTRGx	0x54	R/W	0	第 x 组触发控制寄存器
CMPTRG2x	0x58	R/W	0	第 x 组触发间隔周期配置寄存器 2
EVMUXx	0x60	R/W	0	第 x 组 PWM 外部信号选择
EVMSKx	0x64	R/W	0	第 x 组 PWM 外部信号配置寄存器
IEx	0x70	R/W	0	第 x 组中断使能寄存器
IFx	0x74	R/W1C	0	第 x 组 PWM 的中断状态寄存器
VALUEx	0x78	RO	0	第 x 组计数器的当前计数值
SRx	0x7C	RO	0	第 x 组计数器的当前运行状态
START	0x400	R/W	0	PWM 启动寄存器
SWBRK	0x404	R/W	0	软件 BRK 操作启动寄存器
RESET	0x408	R/W	0	PWM 复位寄存器
RELOADEN	0x40C	R/W	0	PWM 重载请求寄存器
PULSE	0x410	R/W	0	PWM 外部脉冲触发沿选择
FILTER	0x414	R/W	0	PWM 外部信号滤波选择寄存器
BRKPOL	0x418	R/W	0	外部 BRK 控制寄存器
BRKIE	0x41C	R/W	0	外部 BRK 中断使能寄存器
BRKIF	0x420	R/W	0	外部 BRK 中断状态寄存器
EVSR	0x424	RO	0	外部信号当前状态寄存器
	•	•	•	•


6.15.6 寄存器描述

第 x 组 PWM 的工作模式控制寄存器 CRx (x=0,1)

寄存器	偏移	类型	复位值	描述
CRx	0x0		0	第 x 组 PWM 的工作模式控制

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
	RPTNUM						
15	14	13	12	11	10	9	8
	CLKDIV						
7	6	5	4	3	2	1	0
CLK	CLKDIV CLKSRC			DIR	MULT	МС	DDE

位域	名称	描述				
31:24	-	-				
		重载配置寄存器				
		n:表示重复计数 n+1 次之后重载				
23:16	RPTNUM	注 1:该重复计数器仅应用于重载动作,仅当重复计数值计到 0 且计数器溢出之				
23.10	RETINOIVI	后,才会完成重载动作				
		注 2: 计数器每向上或者向下计数一轮,重复计数器减 1,即中心对齐模式下每计				
		一个完整的周期,该重复计数器减 2				
		PWM 工作时钟频率相对于系统时钟的分频比选择:				
		0: 1分频;				
		1: 2分频;				
15:6	CLKDIV	2: 3 分频;				
		以此类推				
		1023:1024 分频				
		注:最多支持 1024 分频				
		第 x 组 PWM 的计数时钟选择				
		00:使用 PWM_DIV 分频后的时钟计数				
5:4	CLKSRC	01:使用 Pulse0 作为 PWM 的计数时钟				
		10:使用 Pulse1 作为 PWM 的计数时钟				
		11: 保留				

		300101211 3(7)
		初始计数方向配置寄存器
		0: 向上计数模式
,	DIR	1: 向下计数模式
3	DIK	注 1:当 MODEx=201 和 10 时,表示中心对齐模式下计数器在前半周期的计数方向
		注 2:向上计数是计数器启动之后初始值为低(begin_with_low)的模式,向下计
		数是计数器启动之后初始值为高(begin_with_high)的模式
		第 x 组 PWM 的计数模式
		0: 单次计数模式
2	MULT	1: 多次计数模式
2	IVIOLI	注 1:单次计数模式下,计数器完成一次计数后产生溢出状态
		注 2: 多次计数模式下,计数器始终处在计数过程当中,且每轮计数完成都会产生
		溢出状态
		第 x 组 PWM 的工作模式控制
		00: 边沿对齐模式
		01:中心对齐模式,计数器双向计数
		10: 非对称中心对齐模式,计数器双向计数
1: 0	MODE	11: 保留
		注 1: 边沿对齐模式和中心对齐模式下,不论计数器是向上计数还是向下计数,均
		以 CMPA/CMPB 为参考值,输出对应的高电平宽度
		注 2:非对称中心对齐模式下,向上计数过程中以 CMPA/CMPB 为参考值,向下计
		数过程中以 CMPA2/CMPB2 为参考值,输出对应的高电平宽度

第 x 组 PWM 配置控制 OCRx(x=0,1)

寄存器	偏移	类型	复位值	描述
OCRx	0x4		0	第 x 组 PWM 配置控制

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
INVBN	INVAN	INVB	INVA	IDLEBN	IDLEAN	IDLEB	IDLEA

位域		描述
31:8	-	-
		1:工作时将 BN 路 pwmobn 反向后输出
-	INIX/DAL	0:工作时将 BN 路 pwmobn 按原始值输出
/	INVBN	注 1:该位直接操作 PWM 的最终输出电平(死区计算、PWMMASK、BRK 操作之
		后)
		1:工作时将 AN 路 pwmoan 反向后输出
6	INVAN	0:工作时将 AN 路 pwmoan 按原始值输出
		注 1:该位直接操作 PWM 的输出电平(死区计算、PWMMASK、BRK 操作之后)
		1: 工作时将 B 路 pwmob 反向后输出
5	INVB	0:工作时将 B 路 pwmob 按原始值输出
		注 1:该位直接操作 PWM 的输出电平(死区计算、PWMMASK、BRK 操作之后)
		1: 工作时将 A 路 pwmoa 反向后输出
4	INVA	0:工作时将 A 路 pwmoa 按原始值输出
		注 1:该位直接操作 PWM 的输出电平(死区计算、PWMMASK、BRK 操作之后)
3	IDLEBN	1:空闲时 BN 路 pwmobn 的原始输出为高
	ID LEDIY	0:空闲时 BN 路 pwmobn 的原始输出为低
2	IDLEAN	1:空闲时 AN 路 pwmoan 的原始输出为高
	1522,114	0:空闲时 AN 路 pwmoan 的原始输出为低
1	IDLEB	1:空闲时 B 路 pwmob 的原始输出为高
_	IDEED	0:空闲时 B 路 pwmob 的原始输出为低
0	IDLEA	1:空闲时 A 路 pwmoa 的原始输出为高
	I LLA	0:空闲时 A 路 pwmoa 的原始输出为低

第 x 组 BRK 控制寄存器 BRKCRx(x=0,1)

寄存器	偏移	类型	复位值	描述
BRKCRx	0x8		0	第 x 组 BRK 控制寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
			-			ACTIVE	SWBRKST
15	14	13	12	11	10	9	8
		-			STPCNT	OUTBN	OUTAN
7	6	5	4	3	2	1	0

位域	名称	描述
31:18	-	-
		当前外部激活的 BRK 状态
17	ACTIVE	1: 正在进行 BRK
		0:没有进行 BRK
		当前软件激活的 BRK 状态
16	SWBRKST	1: 正在进行 BRK
		0:没有进行 BRK
15:11	-	-
		第 x 组计数器在 BRK 过程中的状态
10	STPCNT	0: 计数器不受 BRK 信号影响
		1: 停止并清除计数值
		第 x 组 BN 路在 BRK 过程中输出的电平值
9	OUTBN	1: 刹车过程中输出高电平
		0: 刹车过程中输出低电平
		第 x 组 AN 路在 BRK 过程中输出的电平值
8	OUTAN	1: 刹车过程中输出高电平
		0: 刹车过程中输出低电平
7:6	-	-
		B 路信号在 BRK 信号撤消之后
		0:PWM 输出信号立即变回原始信号
5	OFFB	1:保持 BRK 值直到当前计数周期溢出,PWM 信号才会跟随原始信号进行翻转
		注 1: 当该位被配置为 1 时,需要软件保证 STPCNT 为 0(计数器能够正常计数),
		当 STPCNT 为 1 时,该位配置 1 无效果,按为 0 时的方式发生作用。
		第 x 组 B 路在 BRK 过程中输出的电平值
4	ОИТВ	1: 刹车过程中输出高电平
		0: 刹车过程中输出低电平

SWM211 系列

3:2	-	-
		A 路信号在 BRK 信号撤消之后
		0: PWM 信号立即变回原始信号
1	OFFA	1:保持 BRK 值直到当前计数周期溢出,PWM 信号才会跟随原始信号进行翻转
		注 1: 当该位被配置为 1 时,需要软件保证 STPCNT 为 0(计数器能够正常计数),
		当 STPCNT 为 1 时,该位配置 1 无效果,按为 0 时的方式发生作用。
		第 x 组 A 路在 BRK 过程中输出的电平值
0	OUTA	1: 刹车过程中输出高电平
		0: 刹车过程中输出低电平

注1: SWBRK 和 HWBRK 都受 BRKCTRL 寄存器控制

注2: 配置该 BRKCRx 寄存器之前,应先配置模块 BRK 功能的全局寄存器 BRKPOL、BRKIE.

第 x 组外部 BRK 选择寄存器 BRKINx(x=0,1)

寄存器	偏移	类型	复位值	描述
BRKINx	0xC		0	第 x 组外部 BRK 选择寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
-	BRK2B	BRK1B	BRKOB	-	BRK2A	BRK1A	BRKOA

位域	名称	描述
31:7	-	-
		第 x 组 B 路是否受外部硬件 BRK2 信号的影响
	DDKAD	0: 对应刹车信号失效
6	BRK2B	1: 对应刹车信号有效
		注 1: B/BN 路同时受 BRK2B 控制
		第 x 组 B 路是否受外部硬件 BRK1 信号的影响
_	DDK1D	0: 对应刹车信号失效
5	BRK1B	1: 对应刹车信号有效
		注 1: B/BN 路同时受 BRK1B 控制
		第 x 组 B 路是否受外部硬件 BRKO 信号的影响
4	BRKOB	0: 对应刹车信号失效
Ť	ВККОВ	1: 对应刹车信号有效
		注 1: B/BN 路同时受 BRKOB 控制
3	-	-
		第 x 组 A 路是否受外部硬件 BRK2 信号的影响
2	BRK2A	0: 对应刹车信号失效
_	BNKZA	1: 对应刹车信号有效
		注 1: A/AN 路同时受 BRK2A 控制
		第 x 组 A 路是否受外部硬件 BRK1 信号的影响
1	BRK1A	0: 对应刹车信号失效
1	BRKIA	1: 对应刹车信号有效
		注 1: A/AN 路同时受 BRK1A 控制
		第 x 组 A 路是否受外部硬件 BRKO 信号的影响
0	BRKOA	0: 对应刹车信号失效
	BINOA	1: 对应刹车信号有效
		注 1: A/AN 路同时受 BRKOA 控制

第 x 组 PWM 的周期数 PERIODx(x=0,1)

寄存器	偏移	类型	复位值	描述
PERIODx	0x20		0	第 x 组 PWM 的周期数

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
	PERIOD						
7	6	5	4	3	2	1	0
	PERIOD						

位域	名称	描述
31:16	_	_
15.0		第 x 组 PWM 的周期数
15:0	.5:0 PERIOD	注 1: 实际运行的周期数是该值加 1

注 1: 当周期数等于 0 时,原始输出保持空闲状态的值

注 2: 当高电平值 CMPA/CMPB 为 0 时,输出翻转不考虑死区值,A/B 原始输出保持为 0,AN/BN 原始输出保持为 1

注 3: 当翻转比较值(CMPA/B)+死区值大于周期数时, A/B 原始输出保持为 0, AN/BN 原始输出保持为 1。

注 4: 非对称中心对齐模式下, 当翻转比较值 2 大于周期数时, 比较值 2 配置无效, A/B 原始输出在周期值向下翻转为 0, AN/BN 因为此时翻转比较值+死区值也一定大于周期数, 因此 AN/BN 原始输出此时翻转为 1

第 x 组 A 路 PWM 的高电平宽度 CMPAx(x=0,1)

寄存器	偏移	类型	复位值	描述
СМРАх	0x24		0	第 x 组 A 路 PWM 的高电平宽度

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
	СМРА						
7	6	5	4	3	2	1	0
	СМРА						

位域	名称	描述
31: 16	-	-
	第 x 组 A 路 PWM 的高电平宽度	
		注 1:边沿触发模式下,不论向上还是向下计数模式,均以此比较值作为高电平宽
15:0	СМРА	度。
		注 2:中心对齐模式和非对称中心对齐模式下,此比较值为向上计数过程中的高电
		平宽度值。

第 x 组 B 路 PWM 的高电平宽度 CMPBx(x=0,1)

寄存器	偏移	类型	复位值	描述
СМРВх	0x28	R/W	0	第 x 组 B 路 PWM 的高电平宽度

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
	СМРВ						
7	6	5	4	3	2	1	0
	СМРВ						

位域	名称	描述
31: 16	-	_
		第 x 组 B 路 PWM 的高电平宽度
		注 1:边沿触发模式下,不论向上还是向下计数模式,均以此比较值作为高电平宽
15: 0	СМРВ	度。
		注 2:中心对齐模式和非对称中心对齐模式下,此比较值为向上计数过程中的高电
		平宽度值。

第 x 组 A 路死区长度控制 DZAx(x=0,1)

寄存器	偏移	类型	复位值	描述
DZAx	0x2C		0	第 x 组 A 路死区长度控制

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
			-			D	ZA
7	6	5	4	3	2	1	0
	DZA						

位域	名称	描述
31:10	Reserve	-
		第 x 组 A 路死区长度控制。
		注 1: 当占空比为 0 或 100 时死区失效
9:0	DZA	注 2:只要出现波形上升沿都会计算死区值
		例如:当 idle 值为 0,向下计数,开始启动时也会计算死区值。

第 x 组 B 路死区长度控制 DZBx (x=0,1)

寄存器	偏移	类型	复位值	描述
DZBx	0x30		0	第 x 组 B 路死区长度控制

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
	-						ZB
7	6	5	4	3	2	1	0
DZB							

位域	名称	描述			
31:10	-	_			
		第 x 组 B 路死区长度控制			
0.0		注 1: 当占空比为 0 或 100 时死区失效			
9:0	DZB	注 2:只要出现波形上升沿都会计算死区值			
		例如:当 idle 值为 0,向下计数,开始启动时也会计算死区值。			

第 x 组 A 路 PWM 的高电平宽度 2 寄存器 CMPA2x (x=0,1)

寄存器	偏移	类型	复位值	描述
CMPA2x 0x	0x34 R,	R/W	o	第 x 组 A 路 PWM 的高电平宽度 2,仅在非对称中心
				对齐模式下使用

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
	CMPA2						
7	6	5	4	3	2	1	0
	CMPA2						

位域	名称	描述
31: 16	-	
		第 x 组 A 路 PWM 的高电平宽度 2。
		最小为 0
15.0		注 1:该寄存器仅非对称中心对齐模式下使用,在该模式下,计数器在向上计数过
15:0		程中以 CMPAx 作为高电平宽度,向下计数过程中以 CMPA2x 作为高电平宽度
		注 2:CMPA2 必须小于等于 PERIODx,否则在向下计数过程中 CMPA2 按 PERIODx 计
		算,A 原始输出始终保持 1,AN 原始输出始终保持 0

第 x 组 B 路 PWM 的高电平宽度 2 寄存器 CMPB2x (x=0,1)

寄存器	偏移	类型	复位值	描述
CMPB2x	0x38 R/W	5 444		第 x 组 B 路 PWM 的高电平宽度 2,仅在非对称中心
		0	对齐模式下使用	

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
	СМРВ2						
7	6	5	4	3	2	1	0
	СМРВ2						

位域	名称	描述
31: 16	-	
		第 x 组 B 路 PWM 的高电平宽度 2。
		最小为 0
15 0		注 1:该寄存器仅非对称中心对齐模式下使用,在该模式下,计数器在向上计数过
15: 0		程中以 CMPBx 作为高电平宽度,向下计数过程中以 CMPB2x 作为高电平宽度
		注 2:CMPB2 必须小于 PERIODx,否则在向下计数过程中 CMPB2 按 PERIODx 计
		算,B 原始输出始终保持 1,BN 原始输出始终保持 0

第 x 组计数器溢出配置寄存器 OVFTRGx(x=0,1)

寄存器	偏移	类型	复位值	描述
OVFTRGx	0x50	R/W	0	第 x 组计数器溢出配置

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
	-		MUX			DNEN	UPEN

位域	名称	描述
31: 5	Reserve	-
		计数器溢出信号映射到哪一路 trig 输出
		000:映射到 trig[0]
		001:映射到 trig[1]
		010:映射到 trig[2]
4: 2	мих	011: 映射到 trig[3]
		100:映射到 trig[4]
		101:映射到 trig[5]
		110:映射到 trig[6]
		111: 映射到 trig[7]
		计数器向下溢出映射使能
1	DNEN	1: 向下溢出映射使能
		0: 向下溢出映射不使能
		计数器向上溢出映射使能
0	UPEN	1: 向上溢出映射使能
		0: 向上溢出映射不使能

第 x 组触发控制寄存器 CMPTRGx (x=0,1)

寄存器	偏移	类型	复位值	描述
CMPTRGx	0x54	R/W	0	第 x 组触发控制寄存器

31	30	29	28	27	26	25	24		
	ATP			-		WIDTH			
23	22	21	20	19	18	17	16		
	WIE	OTH		MUX			EN		
15	14	13	12	11	10	9	8		
			CN	ИΡ					
7	6	5	4	3	2	1	0		
	СМР								

位域	名称	描述
		ADC_TRIG 信号产生时机选择位
		000:表示当 pwm_trig 信号产生的同时,生成 1 个系统时钟的 adc_trig 信号
		001:表示在 pwm_trig 信号持续时间的第 1/8 时间点处,生成 1 个系统时钟的 adc_trig
		信号
		010:表示在 pwm_trig 信号持续时间的第 2/8 时间点处,生成 1 个系统时钟的 adc_trig
		信号
		011:表示在 pwm_trig 信号持续时间的第 3/8 时间点处,生成 1 个系统时钟的 adc_trig
		信号
		100:表示在 pwm_trig 信号持续时间的第 4/8 时间点处,生成 1 个系统时钟的 adc_trig
		信号
31: 29	ATP	101:表示在 pwm_trig 信号持续时间的第 5/8 时间点处,生成 1 个系统时钟的 adc_trig
31: 29	AIP	信号
		110:表示在 pwm_trig 信号持续时间的第 6/8 时间点处,生成 1 个系统时钟的 adc_trig
		信号
		111:表示在 pwm_trig 信号持续时间的第 7/8 时间点处,生成 1 个系统时钟的 adc_trig
		信号
		注:
		1:adc_trig 相对于 pwm_trig 的偏移量为:
		0+ ((bit[29] == 1) ? trig_cnt[15:3] : 0)
		+((bit[30] == 1) ? trig_cnt[15:2] : 0)
		+((bit[31] == 1) ? trig_cnt[15:1] : 0)
		2:当 pwm_trig 宽度不能被 8 整除时,会按照如注 1 的情况进行近似计算。
		中心对齐工作模式下,产生 TRIG 信号的时机
20	DIR	0:向上计数过程中产生 TRIG 信号
28	DIR	1:向下计数过程中产生 TRIG 信号
		注 1: 仅在中心对齐模式和非对称中心对齐模式下有效

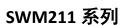
		SVVIVIZII がり
27: 26	-	-
		第 x 组 Trigger 计数器产生的匹配信号输出宽度
		0: 无输出
		1: 输出 4 个计数时钟长度
		2: 输出 8 个计数时钟长度
		3: 输出 12 个计数时钟长度
25:20	WIDTH	
		63: 输出 252 个计数时钟长度
		注 1:每次计数时,会在计数中间产生一个 pclk 的 trig_adc 信号
		注 2:最多输出 252 个计数时钟宽度的 PWM_TRIG(当系统时钟为 125MHz,计数时
		钟与系统时钟一致的情况下,最多可以产生 252*8ns =2.016 us 的 pwm_trig 信号)
		注 3:当 WIDTH 配置为 0 时,不产生 pwm_trig 信号,只产生 trig_adc 信号
		第 x 组 Trigger 计数器产生的匹配信号映射到哪一路 trig 输出
		000:映射到 trig[0]
		001:映射到 trig[1]
		010:映射到 trig[2]
19:17	MUX	011: 映射到 trig[3]
		100:映射到 trig[4]
		101:映射到 trig[5]
		110:映射到 trig[6]
		111: 映射到 trig[7]
		第 x 组 Trigger 计数器信号是否使能
16	EN	1: 使能
		0: 不使能
		第 x 组计数器的值与此比较值相等时产生 Trigger 信号
15:0	СМР	注 1:如果第 x 组计数器的值和此比较值的值相等,则 trigger 输出一个精度为 4 倍
		计数时钟的高脉冲,宽度可配置,且输出的 pwm_trig 能够跨计数器的周期。

第 x 组触发间隔周期配置寄存器 2 CMPTRG2x (x=0,1)

寄存器	偏移	类型	复位值	描述
CMPTRG2x	0x58	R/W	0	第 x 组触发间隔周期配置寄存器 2

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
		-				INTV	

位域	名称	描述
31: 3	-	-
		触发间隔周期选择
		000: 每周期触发
		001:间隔 1 周期触发一次
		010: 间隔 2 周期触发一次
2: 0	INTV	011:间隔 3 周期触发一次
		100: 间隔 4 周期触发一次
		101:间隔 5 周期触发一次
		110: 间隔 6 周期触发一次
		111: 间隔 7 周期触发一次



第 x 组 PWM 外部信号选择寄存器 EVMUXx(x=0,1)

寄存器	偏移	类型	复位值	描述
EVMUXx	0x60	R/W	0	第 x 组 PWM 外部信号选择

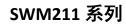
31	30	29	28	27	26	25	24
-	MASKBN			-	MASKAN		
23	22	21	20	19	18	17	16
-	MASKB			-	MASKA		
15	14	13	12	11	10	9	8
-	RELOAD			-	PAUSE		
7	6	5	4	3	2 1 0		
-	STOP			-		START	

位域	名称	描述
31	-	-
		BN 路 MASK 功能选择寄存器
		000:禁用外部信号控制 BN 路 MASK
		001:由 ext_event[0]控制 BN 路 MASK
		010:由 ext_event[1]控制 BN 路 MASK
30: 28	MASKBN	011:由 ext_event[2]控制 BN 路 MASK
		100:由 ext_event[3]控制 BN 路 MASK
		101:由 ext_event[4]控制 BN 路 MASK
		110:由 ext_event[5]控制 BN 路 MASK
		111:由 ext_event[6]控制 BN 路 MASK
27	-	-
		AN 路 MASK 功能选择寄存器
		000:禁用外部信号控制 AN 路 MASK
		001:由 ext_event[0]控制 AN 路 MASK
		010:由 ext_event[1]控制 AN 路 MASK
26: 24	MASKAN	011:由 ext_event[2]控制 AN 路 MASK
		100:由 ext_event[3]控制 AN 路 MASK
		101:由 ext_event[4]控制 AN 路 MASK
		110:由 ext_event[5]控制 AN 路 MASK
		111:由 ext_event[6]控制 AN 路 MASK
23	-	-

		B 路 MASK 功能选择寄存器
		000: 禁用外部信号控制 B 路 MASK
		001:由 ext_event[0]控制 B 路 MASK
		010:由 ext_event[1]控制 B 路 MASK
22: 20	MASKB	011:由 ext_event[2]控制 B 路 MASK
		100:由 ext_event[3]控制 B 路 MASK
		101:由 ext_event[4]控制 B 路 MASK
		110:由 ext_event[5]控制 B 路 MASK
		111:由 ext_event[6]控制 B 路 MASK
19	-	-
		A 路 MASK 功能选择寄存器
		000: 禁用外部信号控制 A 路 MASK
		001:由 ext_event[0]控制 A 路 MASK
		010:由 ext_event[1]控制 A 路 MASK
18: 16	MASKA	011:由 ext_event[2]控制 A 路 MASK
		100:由 ext_event[3]控制 A 路 MASK
		101:由 ext_event[4]控制 A 路 MASK
		110:由 ext_event[5]控制 A 路 MASK
		111:由 ext_event[6]控制 A 路 MASK
15	_	-
		计数器外部重启功能选择寄存器
		000: 禁用外部信号重启计数器
		001: 由 ext_event[0]重启计数器
		010:由 ext_event[1]重启计数器
		011: 由 ext_event[2]重启计数器
14: 12	RELOAD	100: 由 ext_event[3]重启计数器
14. 12	RELOAD	101: 由 ext_event[4]重启计数器
		110: 由 ext_event[5]重启计数器
		111: 由 ext_event[6]重启计数器
		注 1: 外部发起的重启请求,当 RELOAD_EN 为 1 且发生上升沿时,会完成一次"清
		除+重载+启动"的功能,清除的内容为当前计数值、当前的分频值、当前重复计数
		值。然后重新启动一次全新的计数过程。
11	_	-

T		
		计数器外部暂停功能选择寄存器
		000: 禁用外部信号暂停计数器
		001: 由 ext_event[0]暂停计数器
		010:由 ext_event[1]暂停计数器
		011: 由 ext_event[2]暂停计数器
		100: 由 ext_event[3]暂停计数器
10: 8	PAUSE	101: 由 ext_event[4]暂停计数器
		110: 由 ext_event[5]暂停计数器
		111: 由 ext_event[6]暂停计数器
		注 1: 高电平有效
		注 2: 计数器被暂停之后,计数器暂停在当前计数值,当选中的 ext_event 变为低
		(不再暂停)之后,计数器马上继续计数
		注 3: 当检测到外部暂停时,计数器最少保持一个计数时钟的暂停
7	-	-
		计数器外部停止功能选择寄存器
		000: 禁用外部信号停止计数器
		001: 由 ext_event[0]停止计数器
		010:由 ext_event[1]停止计数器
		011: 由 ext_event[2]停止计数器
6 - 4	STOP	100:由 ext_event[3]停止计数器
6: 4	STOP	101: 由 ext_event[4]停止计数器
		110: 由 ext_event[5]停止计数器
		111: 由 ext_event[6]停止计数器
		注 1: 高电平有效
		注 2: 计数器被停止之后,需要等待选中的 ext_event 变为低(停止计数的功能失
		效),再经过 CPU 或者硬件启动,才会开始计数。
3	-	-
		计数器外部启动功能选择寄存器
		000: 禁用外部信号启动计数器
		001:由 ext_event[0]启动计数器
		010:由 ext_event[1]启动计数器
2: 0	START	011:由 ext_event[2]启动计数器
		100:由 ext_event[3]启动计数器
		101:由 ext_event[4]启动计数器
		110:由 ext_event[5]启动计数器
		111: 由 ext_event[6]启动计数器

注1: ext_event[0~4]分别接 PWM_EVT0~4, ext_event[5~6]分别接 TIMER0~1


注:2: 计数器启动为上升沿触发, 立即生效

注3: 计数器停止为高电平停止,低电平释放,立即生效(系统时钟域)

注4: 计数器暂停为高电平暂停,低电平继续计数,输入信号会同步到计数周期上去,当外部

信号的长度小于一个计数时钟时,计数器也会暂停一个计数时钟。

注5:寄存器重启为上升沿触发,当LOAD_EN 为1时,立即生效

注 6: MASK 为高电平时输出设定值,低电平时输出正常值。A/AN/B/BN 路输出 MASK 可以配置为立即生效,也可以配置为等到当前周期溢出之后才会 MASK 到设定值。当 MASK 信号撤消之后,也可以配置为立即生效,或者会继续保留 MASK 值直到当前周期溢出。

第 x 组 PWM 外部信号配置寄存器 EVMSKx (x=0,1)

寄存器	偏移	类型	复位值	描述
EVMSKx	0x64		0	第 x 组 PWM 外部信号配置寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
			-				STPCLR
7	6	5	4	3	2	1	0
	-		IMME	OUTBN	OUTAN	OUTB	OUTA

位域	名称	描述
31:9	-	-
		计数器外部停止期间计数器是否清除
		1: 清除
8	STPCLR	0: 保持当前值,不清除
		注 1:仅在 EV_STOP,即计数器外部停止功能下有效
		注 2:EV_STOP 信号引起的计数器停止和清除动作均立即生效,精确到系统时钟域
7: 5	-	-
		MASK 信号是否立即生效
		1: 立即生效
		0:保持当前值,直到计数溢出之后才被 MASK
		注 1: MASK 信号撤消时,配置与此处一致
4	IMME	注 2: 立即生效会精确到系统时钟域;
		注 3:溢出之后被 MASK 时,PWM 输出会同步到计数器溢出,使用系统时钟对外部
		输入的 MASK 触发信号进行采样,当采到 MASK 触发源为 1 时,PWM 输出被 MASK
		的时间最少持续一个计数溢出。当输入的有效 MASK 触发信号出现在跨计数器溢出
		点的情况时,PWM 输出 MASK 值会持续两次计数溢出
		输出信号 PWMBN 被 MASK 的目标电平值
3	OUTBN	0:表示 MASK 到 0
		1: 表示 MASK 到 1
		输出信号 PWMAN 被 MASK 的目标电平值
2	OUTAN	0:表示 MASK 到 0
		1: 表示 MASK 到 1
		输出信号 PWMB 被 MASK 的目标电平值
1	ОИТВ	0:表示 MASK 到 0
		1: 表示 MASK 到 1

SWM211 系列

Ī			输出信号 PWMA 被 MASK 的目标电平值
d)	OUTA	0: 表示 MASK 到 0
			1: 表示 MASK 到 1

第 x 组中断使能寄存器 IEx (x=0,1)

寄存器	偏移	类型	复位值	描述
IEx	0x70	R/W	0xFF	第 x 组中断使能寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
-	RELOADEN	DNCMPB	DNCMPA	UРСМРВ	UPCMPA	DNOVF	UPOVF

位域	名称	描述	
31: 7	-		
		第 x 组 PWM 计数器重载中断使能	
6	RELOADEN	1: 使能	
		0: 不使能	
		第 x 组 PWM 计数器向下计数过程中 B 路上升沿中断使能	
5	DNCMPB	1: 使能	
		0: 不使能	
		第 x 组 PWM 计数器向下计数过程中 A 路上升沿中断使能	
4	DNCMPA	1: 使能	
		0: 不使能	
		第 x 组 PWM 计数器向上计数过程中 B 路下降沿中断使能	
3	UРСМРВ	1: 使能	
		0: 不使能	
		第 x 组 PWM 计数器向上计数过程中 A 路下降沿中断使能	
2	UPCMPA	1: 使能	
		0: 不使能	
		第 x 组 PWM 计数器向下溢出中断使能	
1	DNOVF	1: 使能	
		0: 不使能	
		第 x 组 PWM 计数器向上溢出中断使能	·
0	UPOVF	1: 使能	
		0: 不使能	

第 x 组 PWM 的中断状态寄存器 IFx(x=0,1)

寄存器	偏移	类型	复位值	描述
IFx	0x74		0	第 x 组 PWM 的中断状态寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
-	RELOADEN	DNCMPB	DNCMPA	UРСМРВ	UPCMPA	DNOVF	UPOVF

位域	名称	描述
31: 7	-	-
		第 x 组 PWM 计数器重载状态,写 1 清除
		1: 已经发生
		0: 没有发生
		注 1: 如下情况下会置位重载状态
		1:当 reload_en 使能之后,每次计数器溢出(向下溢出或者向下溢出)时的自动
6	RELOADST	reload
		2:当 reload_en 使能之后,每个 ev_recount 发生时的 reload
		注 2:当计数器在 start(CPU 引起或者 ev_start)时,会有一个自动 reload,该动作
		不会置位重载状态
		注 3:当 CPU 配置 RESTART_PWMX 寄存器时,同样也会有一个自动 reload,该动作
		也不会置位重载状态
		第 x 组 PWM 计数器向下计数过程中 B 路上升沿发生状态,写 1 清除
5	DNCMPB	1: 已经发生
		0: 没有发生
		第 x 组 PWM 计数器向下计数过程中 A 路上升沿发生状态,写 1 清除
4	DNCMPA	1: 已经发生
		0: 没有发生
		第 x 组 PWM 计数器向上计数过程中 B 路下降沿发生状态,写 1 清除
3	UРСМРВ	1: 已经发生
		0: 没有发生
		第 x 组 PWM 计数器向上计数过程中 A 路下降沿发生状态,写 1 清除
2	UРСМРА	1: 已经发生
		0: 没有发生

SWM211 系列

		第 x 组 PWM 计数器向下溢出状态,写 1 清除				
1 DNOVF	DNOVF	1: 已经发生溢出				
		0: 没有发生溢出				
		第 x 组 PWM 计数器向上溢出状态				
		1: 已经发生溢出				
		0: 没有发生溢出				
		注 1: 写 1 清除				

第 x 组计数器的当前计数值 VALUEx(x=0,1)

寄存器	偏移	类型	复位值	描述
VALUEx	0x78		0	第 x 组计数器的当前计数值

31	30	29	28	27	26	25	24	
				-				
23	22	21	20	19	18	17	16	
				-				
15	14	13	12	11	10	9	8	
	CNT							
7	6	5	4	3	2	1	0	
	CNT							

位域	名称	描述
31:16	-	-
15:0	CNT	第 x 组 PWM 的当前计数值。

第 x 组计数器的当前运行状态 SRx(x=0,1)

寄存器	偏移	类型	复位值	描述
SRx	0x7C	RO	0	第 x 组计数器的当前运行状态

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
			-				OUTBN
7	6	5	4	3	2	1	0
OUTAN	OUTB	OUTA	DIR	-	-	ST	AT

位域	名称	描述
31:9	-	-
8	OUTBN	第 x 组 PWM 计数器当前 BN 路输出
7	OUTAN	第 x 组 PWM 计数器当前 AN 路输出
6	ОИТВ	第 x 组 PWM 计数器当前 B 路输出
5	OUTA	第 x 组 PWM 计数器当前 A 路输出
		第 x 组 PWM 计数器当前计数方向
4	DIR	0: 向上计数过程当中
		1: 向下计数过程当中
3:2	_	-
		第 x 组 PWM 的计数器状态
1.0	STAT	00:IDLE 状态,计数器不工作
1:0	BIAI	01:ACTIVE 状态,计数器正在计数过程中
		10: PAUSE 状态,计数器被暂停

PWM 启动寄存器 START

寄存器	偏移	类型	复位值	描述
START	0x400	R/W	0	PWM 启动寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
			-			PWM1	PWM0

位域	名称	描述			
31: 2	-				
		PWM1 计数器启动位			
		1: 启动			
		0: 停止			
1	PWM1	注 1:CPU 写该寄存器时,写 1 表示启动计数器,写 0 表示停止计数器。			
		注 2: CPU 回读时,为 1 表示发生了 CPU 启动或者外部硬件启动,为 0 表示计数器			
		未启动			
		注 3:单次计数模式完成、BRK 停止、外部硬件停止发生时,该位也会被置 0			
		PWM0 计数器启动位			
		1: 启动			
		0: 停止			
0	PWM0	注 1:CPU 写该寄存器时,写 1 表示启动计数器,写 0 表示停止计数器。			
		注 2: CPU 回读时,为 1 表示发生了 CPU 启动或者外部硬件启动,为 0 表示计数器			
		未启动			
		注 3:单次计数模式完成、BRK 停止、外部硬件停止发生时,该位也会被置 0			

软件 BRK 操作启动寄存器 SWBRK

寄存器	偏移	类型	复位值	描述
SWBRK	0x404	R/W	0	软件 BRK 操作启动寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
			-			PWM1B	PWM0B
7	6	5	4	3	2		

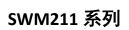
位域	名称	描述
31:10	-	-
		PWM1 的 B 路软件 BRK 启动
9	PWM1B	0: 不启动
		1: 启动
		PWM0 的 B 路软件 BRK 启动
8	PWM0B	0: 不启动
		1: 启动
7:2	-	-
		PWM1 的 A 路软件 BRK 启动
1	PWM1A	0: 不启动
		1: 启动
		PWM0 的 A 路软件 BRK 启动
0	PWM0A	0: 不启动
		1: 启动

PWM 复位寄存器 RESET

寄存器	偏移	类型	复位值	描述
RESET	0x408	R/W1C	0	PWM 复位寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
			-			PWM1	PWM0

位域	名称	描述			
31:2	-				
		PWM1 寄存器复位操作			
		1: 复位			
1	PWM1	0: 不复位			
		注 1: 软件置位,硬件自动清 0			
		注 2:复位范围为该组 PWM 的全部逻辑			
		PWM0 寄存器复位操作			
		1: 复位			
o	PWM0	0: 不复位			
		注 1: 软件置位,硬件自动清 0			
		注 2:复位范围为该组 PWM 的全部逻辑			



PWM 重载请求寄存器 RELOADEN

寄存器	偏移	类型	复位值	描述
RELOADEN	0x40C	R/W	0	PWM 重载请求寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
			_			RESTART_PWM	RESTART_PWM
						1	0
7	6	5	4	3	2	1	0
			_			RESTART_PWM	RESTART_PWM
			_			1	0

位域	名称	描述
31: 10	-	-
		PWM1 重新启动
		软件置位,硬件自动清除
		注 1: 计数器正常计数过程中置位, PWM 会先完成一次"清除+加载"动作,清除
		的内容为当前计数值、当前的分频值、当前重复计数值。然后重新启动一次全新的
		计数过程。
9	RESTART_PWM1	注 2:当 RESTART_PWMX 发生之后,在"清除+加载"过程中,PWM 输出会保持当
		前值(不会引入 IDLE 值),直到重新计数开始之后得到新的输出值。即
		RESTART_PWMX 之后会输出新生成的、与前一次计数没有关系的、完整的 PWM 波
		形。
		注 3:在 IDLE 状态下置位,效果与 START 一致,会引起计数器开始计数(自动完成
		RELOAD)动作
		PWM0 重新启动
		软件置位,硬件自动清除
		注 1: 计数器正常计数过程中置位, PWM 会先完成一次"清除+加载"动作,清除
		的内容为当前计数值、当前的分频值、当前重复计数值。然后重新启动一次全新的
		计数过程。
8	RESTART_PWM0	注 2:当 RESTART_PWMX 发生之后,在"清除+加载"过程中,PWM 输出会保持当
		前值(不会引入 IDLE 值),直到重新计数开始之后得到新的输出值。即
		RESTART_PWMX 之后会输出新生成的、与前一次计数没有关系的、完整的 PWM 波
		形。
		注 3:在 IDLE 状态下置位,效果与 START 一致,会引起计数器开始计数(自动完成
		RELOAD)动作
7: 2	-	-

		1919
		PWM1 寄存器重载使能,软件置位,软件清除
		1: 使能
		0: 不使能
	DELOADENI DIAMAA	注 1: 重新加载(PERIOD, COMPAO、DZA、COMPA1、COMPBO、DZB、COMPB1、
1	RELOADEN_PWM1	TRIG_CNT)的使能位,使能有效时,每次当 RPT_CNTER 为 0 且周期溢出时,都会
		完成加载。
		注 2:RELOAD 使能后,到实际的 RELOAD 动作(周期溢出时)发生之间,如果上述
		的寄存器又被赋予了新值,则以最后的值作为重载值。
		PWM0 寄存器重载使能,软件置位,软件清除
		1: 使能
		0: 不使能
	551 0 4 5 5 11 5 11 4 4 9	注 1: 重新加载(PERIOD, COMPAO、DZA、COMPA1、COMPBO、DZB、COMPB1、
O	RELOADEN_PWM0	TRIG_CNT)的使能位,使能有效时,每次当 RPT_CNTER 为 0 且周期溢出时,都会
		完成加载。
		注 2:RELOAD 使能后,到实际的 RELOAD 动作(周期溢出时)发生之间,如果上述
		的寄存器又被赋予了新值,则以最后的值作为重载值。

PWM 外部脉冲触发沿选择 PULSE

寄存器	偏移	类型	复位值	描述
PULSE	0x410		0	PWM 外部脉冲触发沿选择

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
			-			EDGE1	EDGE0

位域	名称	描述
31:2	-	-
		外部计数时钟 pulse1 触发沿选择寄存器
		1: 上升沿
1:0	EDGE1	0: 下降沿
1.0	EDGEI	注 1:外部计数时钟触发计数器过程中,如果发生了 RESTART_PWMX 功能(外部或
		者软件),则 RESTART_PWMX 之后的新计数过程需要等到下一次 pulse 的触发沿时
		才会发生
		外部计数时钟 pulse0 触发沿选择寄存器
		1: 上升沿
	EDGE0	0: 下降沿
"	EDGEO	注 1:外部计数时钟触发计数器过程中,如果发生了 RESTART_PWMX 功能(外部或
		者软件),则 RESTART_PWMX 之后的新计数过程需要等到下一次 pulse 的触发沿时
		才会发生

PWM 外部信号滤波选择寄存器 FILTER

寄存器	偏移	类型	复位值	描述
FILTER	0x414	R/W	0	PWM 外部信号滤波选择寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
7					FIL	ΓER	

位域	名称	描述
31:2	Reserve	保留
		外部信号滤波配置
		00:滤波被禁止
		01: 过滤 4 个 pclk 时钟周期
1:0	FILTER	10: 过滤 8 个 pclk 时钟周期
		11: 过滤 16 个 pclk 时钟周期
		注 1:ext_event[3:0]和外部 BRK 信号同时参与滤波,且配置一致
		注 2:ext_event[6:4]不参与滤波

外部 BRK 控制寄存器 BRKPOL

寄存器	偏移	类型	复位值	描述
BRKPOL	0x418	R/W	0	外部 BRK 控制寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
		-			BRK2	BRK1	BRK0

位域	名称	描述
31:3	-	-
		刹车信号 2 极性配置
2	BRK2	1: 硬件刹车输入高电平有效
		0: 硬件刹车输入低电平有效
		刹车信号 1 极性配置
1	BRK1	1: 硬件刹车输入高电平有效
		0: 硬件刹车输入低电平有效
		刹车信号 0 极性配置
0	BRK0	1: 硬件刹车输入高电平有效
		0: 硬件刹车输入低电平有效

外部 BRK 中断使能寄存器 BRKIE

寄存器	偏移	类型	复位值	描述
BRKIE	0x41C		0	外部 BRK 中断使能寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
		-			BRK2	BRK1	BRKO

位域	名称	描述
31:3	-	-
		硬件刹车 2 中断使能。
2	BRK2	1: 使能
		0: 不使能
		硬件刹车1中断使能。
1	BRK1	1: 使能
		0: 不使能
		硬件刹车 0 中断使能。
0	BRK0	1: 使能
		0: 不使能

外部 BRK 中断状态寄存器 BRKIF

寄存器	偏移	类型	复位值	描述
BRKIF	0x420	R/W1C	0	外部 BRK 中断状态寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
-	BRK2_VAL	BRK1_VAL	BRKO_VAL	-	BRK2	BRK1	BRK0

位域	名称	描述
31:7	-	-
_	DD1/2 1/41	硬件刹车 2 的当前电平值
6	BRK2_VAL	注 1: 只单纯记录刹车 PIN 脚当前电平值,与刹车配置信息无关
_	DDK4 MAI	硬件刹车 1 的当前电平值
5	BRK1_VAL	注 1: 只单纯记录刹车 PIN 脚当前电平值,与刹车配置信息无关
4	BRKO_VAL	硬件刹车 0 的当前电平值
4	BKKU_VAL	注 1: 只单纯记录刹车 PIN 脚当前电平值,与刹车配置信息无关
3	-	-
		硬件刹车 2 状态。
		1: 已经发生
2	BRK2	0: 没有发生
2	BKKZ	注1: 写1清除
		注 2: 只有在至少有一组 PWM 选择了某一个刹车时,该刹车对应的中断状态才能
		生效,否则会一直保持为 0
		硬件刹车1状态。
		1: 已经发生
1	BRK1	0: 没有发生
_	BKKI	注1: 写1清除
		注 2: 只有在至少有一组 PWM 选择了某一个刹车时,该刹车对应的中断状态才能
		生效,否则会一直保持为 0
		硬件刹车0状态。
		1: 已经发生
0	BRKO	0: 没有发生
	BINO	注1:写1清除
		注 2: 只有在至少有一组 PWM 选择了某一个刹车时,该刹车对应的中断状态才能
		生效,否则会一直保持为 0

外部信号当前状态寄存器 EVSR

寄存器	偏移	类型	复位值	描述
EVSR	0x424		0	外部信号当前状态寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
-	EV6	EV5	EV4	EV3	EV2	EV1	EV0

位域	名称	描述
31:7	-	-
		外部信号 6 的当前电平值
		1: 高电平
6	EV6	0: 低电平
		注 1:只单纯记录 ext_event 的当前电平值,与配置信息无关
		注 2:当短时间内出现多次脉冲时,CPU 不一定能够及时获得准确的当前电平值
		外部信号 5 的当前电平值
		1: 高电平
5	EV5	0: 低电平
		注 1:只单纯记录 ext_event 的当前电平值,与配置信息无关
		注 2:当短时间内出现多次脉冲时,CPU 不一定能够及时获得准确的当前电平值
		外部信号 4 的当前电平值
		1: 高电平
4	EV4	0: 低电平
		注 1:只单纯记录 ext_event 的当前电平值,与配置信息无关
		注 2:当短时间内出现多次脉冲时,CPU 不一定能够及时获得准确的当前电平值
		外部信号 3 的当前电平值
		1: 高电平
3	EV3	0: 低电平
		注 1:只单纯记录 ext_event 的当前电平值,与配置信息无关
		注 2:当短时间内出现多次脉冲时,CPU 不一定能够及时获得准确的当前电平值
		外部信号 2 的当前电平值
		1: 高电平
2	EV2	0: 低电平
		注 1:只单纯记录 ext_event 的当前电平值,与配置信息无关
		注 2:当短时间内出现多次脉冲时,CPU 不一定能够及时获得准确的当前电平值

SWM211 系列

		外部信号 1 的当前电平值			
		1: 高电平			
1	EV1	0: 低电平			
		注 1:只单纯记录 ext_event 的当前电平值,与配置信息无关			
		注 2:当短时间内出现多次脉冲时,CPU 不一定能够及时获得准确的当前电平值			
		外部信号 0 的当前电平值			
		1: 高电平			
0 EVO		0: 低电平			
		注 1:只单纯记录 ext_event 的当前电平值,与配置信息无关			
		注 2:当短时间内出现多次脉冲时,CPU 不一定能够及时获得准确的当前电平值			

6.16 3P3N 预驱 (3P3N GATE DRIVER)

6.16.1 概述

此模块是一款高压、高速功率 PN 型 MOSFET 驱动器,具有三个独立的高端和低端参考输出通道,适用于三相应用。

6.16.2 特性

- 工作电压 8-40V
- 3xPMOS 栅极驱动器
- 3 个用于 NMOS 栅极驱动器的输入/输出引脚
- 5V/30mA LDO
- 集成死区时间: 50ns (TYP)

6.16.3 模块结构框图

图 6-79 预驱电路结构框图

6.16.4 功能描述

引脚对应

表 6-1 预驱引脚与芯片内部对应关系

预驱引 脚	内部连接管脚	对应 PWM
ніз	A5	PWM1A/PWM0AN/PWM1AN
HI2	A4	PWM1B/PWM1AN/PWM1BN
HI1	A3	PWM0A/PWM1AN/PWM0AN
LI3	A2	PWM1AN/PWM0AN/PWM1A
LI2	A1	PWM1BN/PWM1B
LI1	A0	PWM0AN/PWM1BN/PWM0A

注: 表格内容为芯片内部连接对应关系

表 6-2 OPA 输出引脚与 ADC 对应关系

引脚标号	OPA 输出引脚	对应 ADC 通道
В9	OPAOUTO	ADC0_CH3
А8	OPAOUT1	ADC0_CH2
A11	OPAOUT2	ADC0_CH1

操作说明

如需使用 PWM 驱动 HINx/LINx, 建议按照如下顺序配置

- 查看预驱引脚与芯片内部对应关系,如表 6-3 所示
- 通过 PORT_SEL 寄存器将引脚切换为指定 PWM 功能
- 配置 PWM,详情请查看 PWM 章节
- PWM 使能

参考应用电路

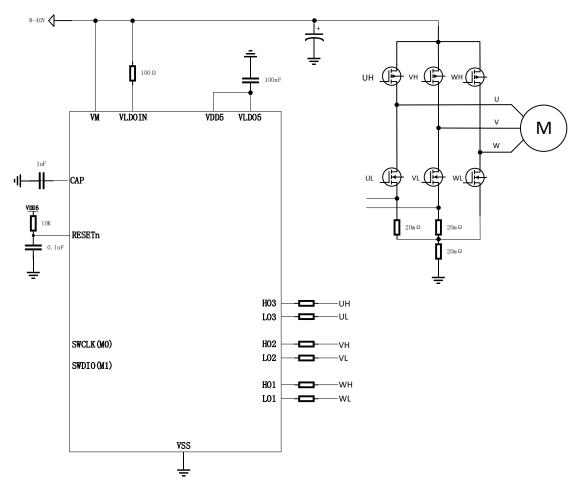


图 6-80 参考应用电路图

6.17 6N 预驱(6N GATE DRIVER-SWM21DC8U7/D8U7)

6.17.1 概述

集成了三个独立的半桥栅极驱动集成电路芯片,专为高压、高速驱动 MOSFET 设计,悬浮绝对电压高达+250V。

6.17.2 特性

- 悬浮绝对电压+250V
- 电源电压工作范围 5V-20V
- 输出电流 1.5A/1.8A (典型值)
- 死区时间 250ns (典型值)

6.17.3 模块结构框图

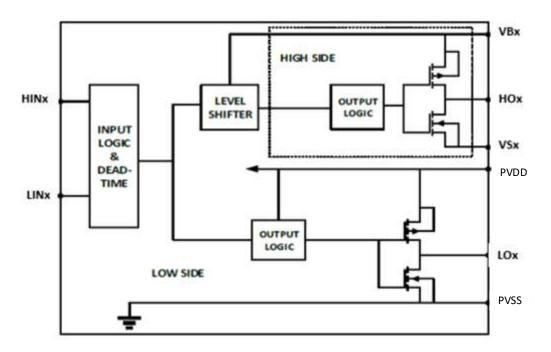


图 6-81 21DC8 Driver 模块结构框图

6.17.4 功能描述

引脚对应关系

表 6-3 预驱引脚与芯片内部对应关系

预驱引脚	内部连接管脚	对应 PWM
HIN1	A5	PWM1A/PWM0AN/PWM1AN
LIN1	A2	PWM1AN/PWM0AN/PWM1A
HIN2	A4	PWM1B/PWM1AN/PWM1BN
LIN2	A1	PWM1BN/PWM1B
HIN3	A3	PWM0A/PWM1AN/PWM0AN
LIN3	A0	PWM0AN/PWM1BN/PWM0A

注: 表格内容为芯片内部连接对应关系

驱动连接示意图

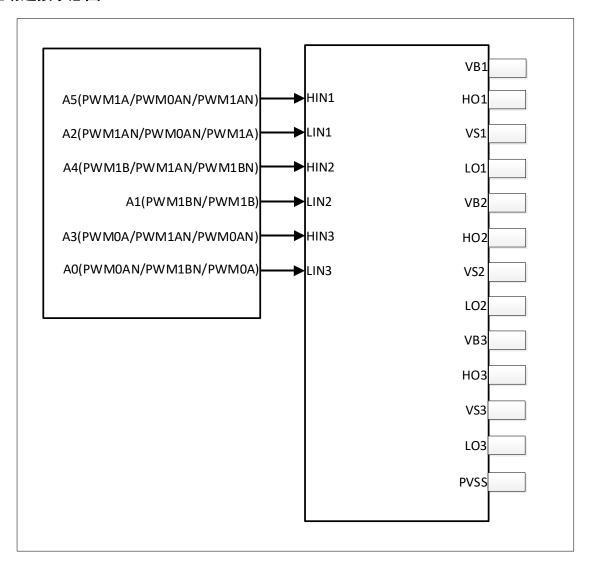


图 6-82 驱动连接示意图

低边电源 PVDD 和欠压锁定(UVLO)

如图 6-83 所示, PVDD 为低边电路电源供应端, 能为输入逻辑电路和低边输出功率级工作提供 所需的驱动能量。

内置的欠压锁定电路能保证芯片工作在足够高的电源电压范围,进而防止由于低驱动电压所产生的热耗散对 MOSFET/IGBT 造成损害。

如图 6-83 所示,当 PVDD 上升并超过阈值电压 PVDDUV+=4.20V 后,低边控制电路解锁并开始工作,LO 开始输出;反之,PVDD 下降并低于阈值电压 PVDDUV-=4.00V 后,低边电路锁定,芯片停止工作,LO 停止输出。

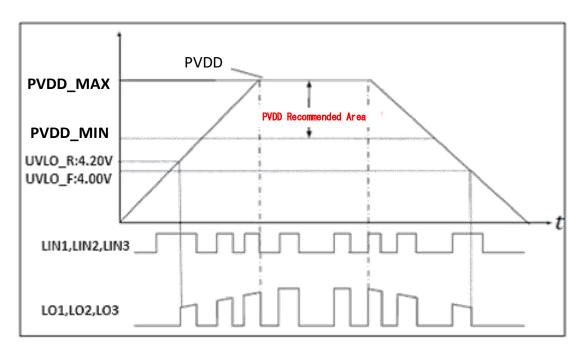


图 6-83 工作电压范围

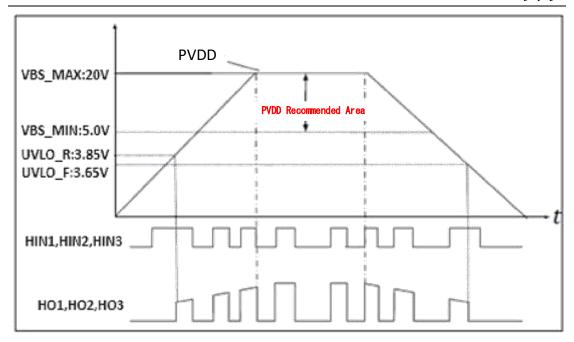
高边电源 VBS(VB1-VS1,VB2-VS2,VB3-VS3)和欠压锁定(UVLO)

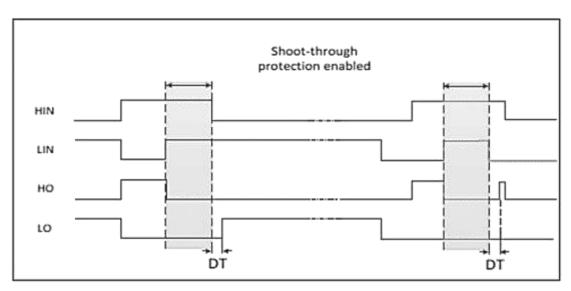
VBS 电源为高边电路供电电源, 其中 VBS1(VB1-VS1), VBS2(VB2-VS2)和 VBS3(VB3-VS3)分别对应相 1, 相 2 和相 3 高边驱动电源。

由浮动电源 VBS 供电的整体高边电路以地 GND 为参考点,并跟随外部功率管 MOSFET/IGBT 的源/发射极电压,在地线和母线电压之间摆动。

由于高边电路具有低静态电流消耗,因此整个高边电路可以由与 PVDD 连接的自举电路技术供电,并且只需一个较小的电容就能维持驱动功率管所需电压。

如图 6-84 所示,高边电源 VBS 的欠压锁定类似于低边 PVDD 电源, VBS 工作电压范围建议在 5.0V-20V。




图 6-84 VBS 工作区域示意图

功率管直通保护(SHOOT-THROUGHPREVENTION)

该预驱配备了专门用于防止功率管直通的保护电路,能有效地防止高边和低边输入讯号受到共模干扰时造成的功率管损害。图 6-91 展示了直通保护电路如何保护功率管的过程。

功率管直通意味着同一个半桥中的高边栅极驱动器输出 HO 和低边栅极驱动器输出 LO 同时为 "高",这时会有非常大的有害电流,同时流过上下边功率管,并伴有较大的功率损耗产生,严重 时会直接损坏功率管。

如图 6-85 所示,当同一相的低边输入 LIN 和高边输入 HIN 同时为"高"时,内部保护电路将驱动器输出 HO 和 LO 拉至"低",有效关断功率管。当其中一个输入信号变为"低"时,驱动器输出需要经过一个死区时间的延时才能输出"高"。该措施避免了有害短输入脉冲造成的功率管开关过度状态,有效地减小损耗,降低功率管损坏的风险。

图 6-85 直通防止功能示意图

死区保护功能

该预驱内部设置了固定的死区时间保护电路。

在死区时间内,高边和低边驱动器输出均被设定为"低"。所设定的死区时间必须在确保一个功率管有效关断之后,再开启另外一个功率管,这样防止产生上下管直通现象。

如果由逻辑输入设定的外部死区时间小于内部最小死区时间,则驱动器输出的死区时间为芯片内部设定的死区时间;一旦由逻辑输入设定的外部死区时间大于芯片内部设定死区时间,则以逻辑输入设定的外部死区时间为驱动器输出死区时间。

图 6-86 描述了死区时间、输入信号和驱动器输出信号的时序关系。

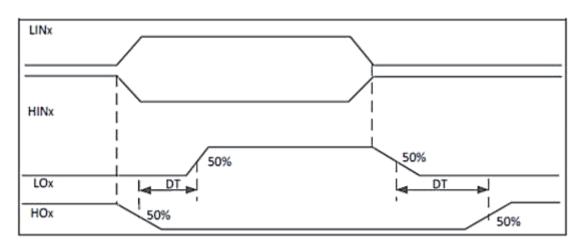


图 6-86 死区功能示意图

操作说明

如需使用 PWM 驱动 HINx/LINx, 建议按照如下顺序配置

- 查看预驱引脚与芯片内部对应关系,如表 6-3 所示
- 通过 PORT_SEL 寄存器将引脚切换为指定 PWM 功能
- 配置 PWM, 详情请查看 PWM 章节
- PWM 使能

参考应用电路

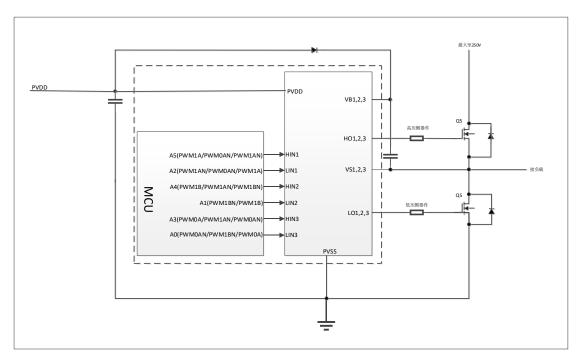


图 6-87 参考应用电路图

6.18 6N 预驱(6N GATE DRIVER-SWM21DK6U7)

6.18.1 概述

此模块是一款耐压为 70V 的集成了三个独立半桥栅极驱动器,适合于 12V,24V 和 36V 的三相电机应用中高速功率 MOSFET 和 IGBT 的栅极驱动,同时集成了 MCU 的供电 5.0V LDO,简化了整个供电系统。

6.18.2 特性

- 悬浮绝对电压 75V
- VM 电压范围 10.0-70.0V
- 输出电流+1.5A/-1.8A(典型值)
- 死区时间 250ns (典型值)
- 集成 PVDD 和 VBS 欠压保护
- 集成 5VLDO
- 输出短路保护
- 负瞬态电压承受能力
- 集成共模噪音消除电路

6.18.3 功能描述

引脚对应关系

表 6-4 预驱引脚与芯片内部对应关系

预驱引脚	内部连接管脚	对应 PWM
HIN1	A5	PWM1A/PWM0AN/PWM1AN
LIN1	A2	PWM1AN/PWM0AN/PWM1A
HIN2	A4	PWM1B/PWM1AN/PWM1BN
LIN2	A1	PWM1BN/PWM1B
HIN3	A3	PWM0A/PWM1AN/PWM0AN
LIN3	A0	PWM0AN/PWM1BN/PWM0A

注: 表格内容为芯片内部连接对应关系

驱动连接示意图

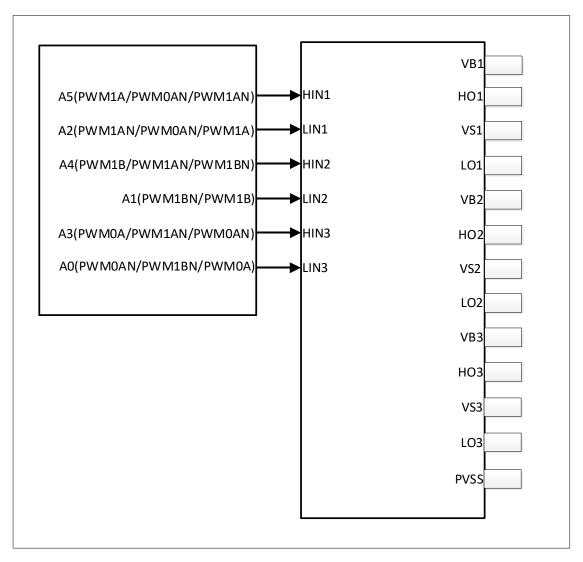


图 6-88 驱动连接示意图

低边电源 VOUT12 和欠压锁定(UVLO)

如图 6-89 所示, VOUT12 为低边电路电源供应端,能为输入逻辑电路和低边输出功率级工作提供所需的驱动能量。

内置的欠压锁定电路能保证芯片工作在足够高的电源电压范围,进而防止由于低驱动电压所产生的热耗散对 MOSFET/IGBT 造成损害。

如图 6-89 所示,当 VOUT12 上升并超过阈值电压 VOUT12_R=7.9V 后,低边控制电路解锁并开始工作,LO 开始输出;反之,VOUT12 下降并低于阈值电压 VOUT12_F=7.4V 后,低边电路锁定,芯片停止工作,LO 停止输出。VOUT12 工作电压范围建议为 10.0V-20.0V。

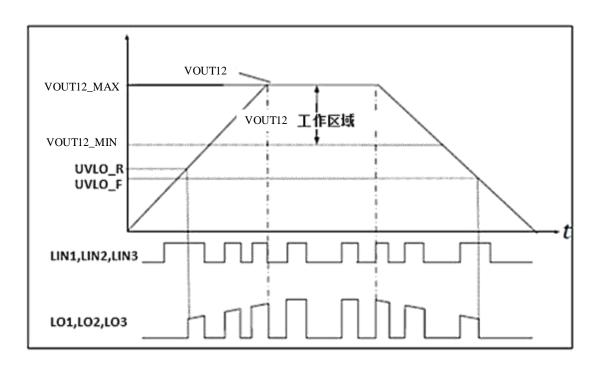


图 6-89 电源工作区示意图

高边电源 VBS(VB1-VS1,VB2-VS2,VB3-VS3)和欠压锁定(UVLO)

VBS 电源为高边电路供电电源, 其中 VBS1(VB1-VS1), VBS2(VB2-VS2)和 VBS3(VB3-VS3)分别对应相 1, 相 2 和相 3 高边驱动电源。

由浮动电源 VBS 供电的整体高边电路以地 GND 为参考点,并跟随外部功率管 MOSFET/IGBT 的源发射极电压,在地线和母线电压之间摆动。由于高边电路具有低静态电流消耗,因此整个高边电路可以由与 VOUT12 连接的自举电路技术供电,并且只需一个较小的电容就能维持驱动功率管所需电压。

如图 6-90 所示, 高边电源 VBS 的欠压锁定类似于低边 VOUT12 电源, VBS 工作电压范围建议在10.0V-20V。

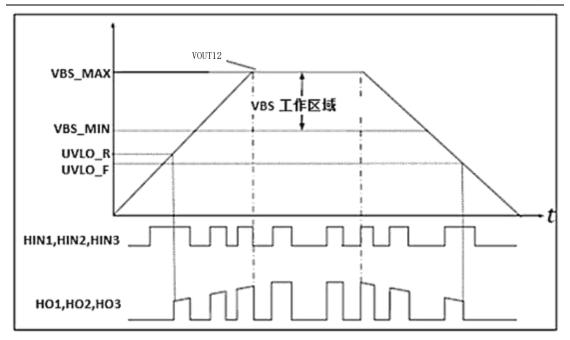


图 6-90 VBS 工作区域示意图

低边和高边逻辑输入控制:HIN&LIN(HIN1,2,3/LIN1,2,3)

该预驱的 6 个输入施密特反相器的阈值可兼容 5V 的 LSTTL 和 CMOS 逻辑电平。

内置施密特反相器和先进脉冲滤波器更加有效地屏蔽非正常的输入短脉冲信号, 大幅提升系统 的对干扰免疫力和可靠性。

每个逻辑输入端在芯片内部都预置 140KΩ 的下拉电阻,保证在焊接(虚焊)和输入非有效连接等异常情况下能提供关断功率管控制讯号。

输入脉冲宽度尽量不低于 300ns, 以保证正确的输入和输出关系。

功率管直通保护(SHOOT-THROUGHPREVENTION)

该预驱配备了专门用于防止功率管直通的保护电路,能有效地防止高边和低边输入讯号受到共模干扰时造成的功率管损害。图 6-91 展示了直通保护电路如何保护功率管的过程。

功率管直通意味着同一个半桥中的高边栅极驱动器输出 HO 和低边栅极驱动器输出 LO 同时为 "高",这时会有非常大的有害电流,同时流过上下边功率管,并伴有较大的功率损耗产生,严重时会直接损坏功率管。

如图 6-91 所示,当同一相的低边输入 LIN 和高边输入 HIN 同时为"高"时,内部保护电路将驱动器输出 HO 和 LO 拉至"低",有效关断功率管。当其中一个输入信号变为"低"时,驱动器输出需要经过一个死区时间的延时才能输出"高"。该措施避免了有害短输入脉冲造成的功率管开关过度状态,有效地减小损耗,降低功率管损坏的风险。

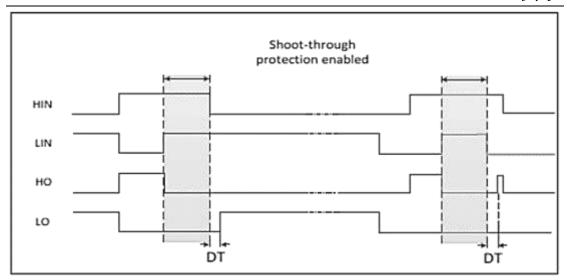


图 6-91 直通保护示意图

死区保护(DEAD TIME)

该预驱内部设置了固定的死区时间保护电路。

在死区时间内,高边和低边驱动器输出均被设定为"低"。所设定的死区时间必须在确保一个功率管有效关断之后,再开启另外一个功率管,这样防止产生上下管直通现象。

如果由逻辑输入设定的外部死区时间小于内部最小死区时间,则驱动器输出的死区时间为芯片内部设定的死区时间;一旦由逻辑输入设定的外部死区时间大于芯片内部设定死区时间,则以逻辑输入设定的外部死区时间为驱动器输出死区时间。

图 6-92 描述了死区时间、输入信号和驱动器输出信号的时序关系。

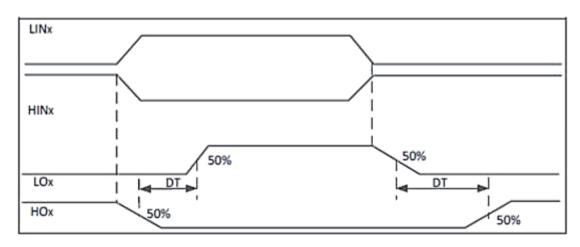


图 6-92 死区时间保护

操作说明

如需使用 PWM 驱动 HINx/LINx, 建议按照如下顺序配置

● 查看预驱引脚与芯片内部对应关系,如表 6-3 所示

- 通过 PORT_SEL 寄存器将引脚切换为指定 PWM 功能
- 配置 PWM,详情请查看 PWM 章节
- PWM 使能

参考应用电路

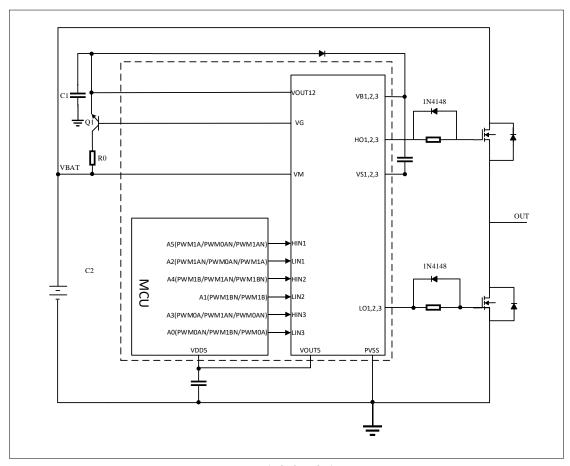


图 6-93 参考应用电路图

注1: 在12V 应用下, VM 和 VOUT12 可以直接短接, Q1 和 RO 可不需要

注2: 在24V 或36V 应用下,可以调整RO 的阻值优化散热

6.19 模拟数字转换器(SAR ADC)

6.19.1 概述

SWM211 系列所有型号 SAR ADC 操作均相同,不同型号 ADC 通道数量可能不同,最多支持 1 组 12 通道。使用前需使能 SAR ADC 模块时钟。

6.19.2 特性

- 12-位分辨率
- 最高 1MSPS 转换速率
- 支持单次模式和连续模式
- 具备深度为 8 的 FIFO
- 灵活的转换启动方式,支持软件、PWM、TIMER 启动
- 每个通道都有自己独立的转换结果数据寄存器和转换完成、数据溢出状态寄存器

6.19.3 模块结构框图

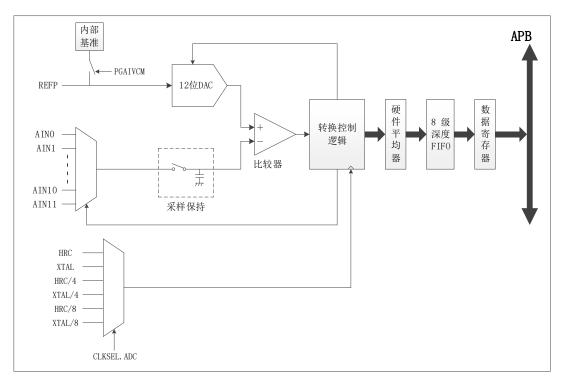


图 6-94 ADC 模块结构框图

6.19.4 功能描述

操作说明

使用 SAR ADC 前,需针对对应引脚及模块进行如下操作:

- 通过 PORTX_FUNC 寄存器将引脚切换为 SAR ADC CHx 功能
- 通过 CTRL 寄存器中 TRIG 位配置触发方式
- 通过 CTRL 寄存器中 CONT 位配置采样方式
- 通过 CTRL 寄存器中 AVG 位配置是否需要硬件计算平均值
- 如需使用中断,通过 IE 寄存器使能对应中断
- 配置 CTRL 寄存器中对应通道(CHx)选通
- 使能 CTRL 寄存器中 EN 位
- 使用软件使能 START 寄存器 GO 位触发采样或使用 TIMER、PWM 模块触发采样
- 工作过程中, START 寄存器将被硬件置 1, 采样完成后, 自动清 0

时钟说明

ADC 的分频配置,需要根据主频进行配置,配置后 ADC 模块采样率需小于等于 1M。

ADC 模块时钟,可通过 SYSCON 模块中 CLKSEL 寄存器 ADC_SRC, ADCDIV, ADCCLKO 等位配置 ADC 时钟源,通过 ADC 模块中 CTRL3 寄存器 CLKDIV1 和 CLKDIV2 位配置时钟分频,在此基础上,ADC 有一个固定的 4 分频,ADC 时钟的计算分频过程如图 6-95 所示:

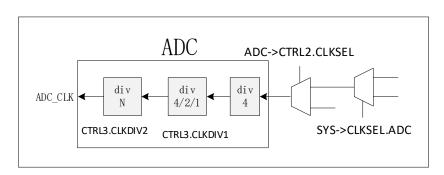


图 6-95 ADC 时钟示意图

触发源选择

SAR ADC 支持 CPU 触发、PWM 触发及 TIMER 触发。通过将 SAR ADC CTRL 寄存器中 TRIG 进行设置,该设置对所有选中通道均有效,当不同通道需要不同触发方式时,需要在采样间隔配置 TRIG 位进行切换。

各模式触发操作方式如下:

使用 PWM 触发

PWM 配置所需模式,将 SARADC 的 CTRL 寄存器中 TRIG 方式设置为 PWM 触发。每路 PWM 对应一个 ADTRG 寄存器值,当 PWM 计数到指定值,可触发 ADC 进行采样。

PWM 在任意模式下可以触发 ADC,每一路输出独立的 ADC 触发信号,且每个周期可以设置 1 个 ADC 触发点,每个 PWM 只输出一个触发信号,不区分 A、B 分别触发。

另外, 当使用 PWM 触发 ADC 时,需将 CPU 触发通道值与 PWM 通道触发通道值一致才能触发 ADC,即 ADC->CHSEL.SW 和 ADC->CHSEL.PWM 的值必须一样,PWM 触发 ADC 才有效。

具体配置方式如下(以 ADTRG0A0 为例):

- PWM 配置所需模式,
- 配置 PWM 模块 ADTRGOAO 数值,该数值为触发延时时长,在中心对称模式下,前半周期从周期起始记,后半周期采样点与前半周期中心对称
- 使能 ADTRG0A0 寄存器 EN 位
- 配置 ADC 寄存器中 TRIG 寄存器 AO 对应位,确认该通道未被屏蔽
- 使能 PWM 模块 EN 位,当计数值到达 ADTRGOAO 设置值时,触发 ADC CTRL 寄存器中选中的通道(CHx)进行采样,采样完成后,将产生 EOC 标志位,并产生 ADC 中断

示意图如图 6-96 所示。

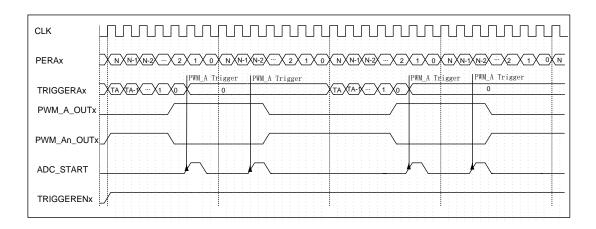


图 6-96 中心对称模式下 PWM 触发 ADC 采样示意图

使用软件触发

将 CTRL 寄存器中 TRIG 设置为 CPU 触发。ADC 配置完成后,通过程序将 START 寄存器 GO 位置 1 触发采样。采样完成后,该位自动清 0。可以通过 ADC 采样完成中断或标志位查询进行结果获取。软件触发支持单次模式和连续模式。

注 1: 当 PWM 触发 ADC 与软件触发 ADC 同时使用时,重新配置触发方式后,需重新配置 ADCO->CTRL 寄存器,此次更新的配置才会有效。

软件触发时采样模式说明

ADC 采样模式在软件触发方式下可分为单次模式和连续模式。

单次模式

单次模式在所有选通的通道上执行一次转换,然后自动停止,其流程如下:

- 配置 ADC 所需转换通道
- 启动 ADC 采样前, CTRL 寄存器 CONT 位配置为单次模式
- START 寄存器 GO 位写 1 启动转换
- 所有 CTRL 寄存器中选通通道从小到大依次完成一次转换,并将转换结果和转换完成 EOC 标志存入通道对应的数据和状态寄存器
- 每个通道转换完成时对应通道状态寄存器的 EOC 标志会置位,如果该通道的 EOC 中断 使能,则该通道转换完成时会触发中断处理程序
- 所有通道转换完成后, START 寄存器 busy 位自动清零, 停止转换, ADC 进入 Idle 模式。

连续模式

连续模式下 ADC 会不断的重复在所有选通的通道上执行转换,直到软件向 START 寄存器 GO 位写 0 才会停止转换。

连续采样示意图如图 6-98 所示。

具体操作步骤如下:

- 配置 ADC 所需转换通道
- 启动 ADC 采样前, CTRL 寄存器 CONT 位配置为连续模式
- START 寄存器写 1 启动转换
- 所有 CTRL 寄存器中选通通道从小到大依次完成一次转换, 转换完成后 EOC 标志将存入 通道对应的状态寄存器
- 使用 FIFO 时,采样结果及对应通道将存至 FIFO,未使用 FIFO 时,转换结果存入通道对 应的数据寄存器
- 每个通道转换完成时对应通道状态寄存器的 EOC 标志会置位,如果该通道的 EOC 中断 使能,则该通道转换完成时会触发中断处理程序
- 重复采样及结果存储,直到 START 寄存器写 0, A/D 转换停止, A/D 转换器进入空闲状态。

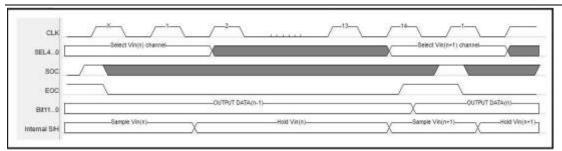


图 6-97 SAR ADC 连续采样示意图

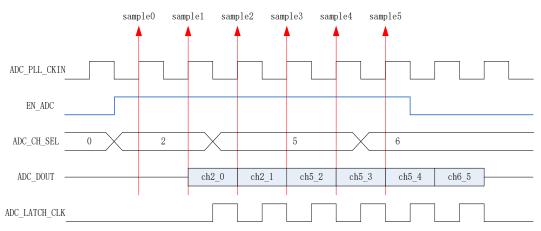


图 6-98 SAR ADC 多通道连续采样示意图

数据处理

SAR ADC 支持针对采样数据硬件自动完成平均值计算。通过配置 CTRL 寄存器中 AVG 位设置为结果取平均。支持 2 到 16 次取平均。设置 N 次平均,则采集完成 N 次后 EOC 标志有效,同时取平均值的结果被送至对应通道数据寄存器。

参考源选择

SAR ADC 支持使用 REFP 和 REFN 作为输入电压参考。部分 ADCx 可具有独立的参考电压输入(不同封装可能有所变化,具体见封装引脚图),当封装图上有 REFP/REFN 引脚时,需接外部参考电压,此时参考电压为接入电压;当封装图上没有 REFP/REFN 引脚时,参考电压为 ADC 电源电压 AVDD/AVSS。

供电电压

ADC 正常供电电压范围为 2.5V~5.5V, 其特性详情请参考表格 8-6 所示。

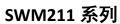
ADC 工作电压在 2.5V 以下时会影响 ADC 精度,建议 2.5V 电压点以下不使用 ADC 值。

中断配置与清除

可通过配置中断使能寄存器 IE 中相应位使能中断。当中断触发后,中断标志寄存器 IF 中对应位置 1。如需清除此标志,需在对应标志位中写 1 清零(R/W1C),否则中断在开启状态下会一直进入。

6.19.5 寄存器映射

名称	偏移	类型	复位值	描述
SAR-ADCO BASE: 0x40049000				
CTRL	0x00	R/W	0	ADC 配置寄存器
START	0x04	R/W	0	ADC 启动寄存器
IE	0x08	R/W	0	ADC 中断使能寄存器
IF	0x0C	R/W1C	0	ADC 中断状态寄存器
STATO	0x10	R/W	0	ADC 通道 0 状态寄存器
DATA0	0x14	R/W	0	ADC 通道 0 数据寄存器
STAT1	0x20	R/W	0	ADC 通道 1 状态寄存器
DATA1	0x24	R/W	0	ADC 通道 1 数据寄存器
STAT2	0x30	R/W	0	ADC 通道 2 状态寄存器
DATA2	0x34	R/W	0	ADC 通道 2 数据寄存器
STAT3	0x40	R/W	0	ADC 通道 3 状态寄存器
DATA3	0x44	R/W	0	ADC 通道 3 数据寄存器
STAT4	0x50	R/W	0	ADC 通道 4 状态寄存器
DATA4	0x54	R/W	0	ADC 通道 4 数据寄存器
STAT5	0x60	R/W	0	ADC 通道 5 状态寄存器
DATA5	0x64	R/W	0	ADC 通道 5 数据寄存器
STAT6	0x70	R/W	0	ADC 通道 6 状态寄存器
DATA6	0x74	R/W	0	ADC 通道 6 数据寄存器
STAT7	0x80	R/W	0	ADC 通道 7 状态寄存器
DATA7	0x84	R/W	0	ADC 通道 7 数据寄存器
STAT8	0x90	R/W	0	ADC 通道 8 状态寄存器
DATA8	0x94	R/W	0	ADC 通道 8 数据寄存器
STAT9	0xa0	R/W	0	ADC 通道 9 状态寄存器
DATA9	0xa4	R/W	0	ADC 通道 9 数据寄存器
STAT10	0xb0	R/W	0	ADC 通道 10 状态寄存器
DATA10	0xb4	R/W	0	ADC 通道 10 数据寄存器
STAT11	0xc0	R/W	0	ADC 通道 11 状态寄存器
DATA11	0xc4	R/W	0	ADC 通道 11 数据寄存器
CHSEL	0xd0	R/W	0	ADC 通道配置寄存器
FIFOSR	0x190	R/W	0	ADC FIFO 状态寄存器
FIFODR	0x194	R/W	0	ADC 所有通道数据寄存器
CTRL2	0x1a0	R/W	0	ADC 配置寄存器 1
CTRL3	0x1a4	R/W	0	ADC 配置寄存器 2
CTRL4	0x1a8	R/W	0	ADC 配置寄存器 3
TRGMSK	0x1b0	R/W	0	PWM 通道触发 ADC 屏蔽寄存器
CALIBSET	0x1f4	R/W	0	CALIB 配置寄存器
CALIBEN	0x1f8	R/W	0	CALIB 使能寄存器


6.19.6 寄存器描述

配置寄存器 CTRL

寄存器	偏移	类型	复位值	描述
CTRL	0x00	R/W	00	ADC 配置寄存器

31	30	29	28	27	26	25	24
			-				AVG
23	22	21	20	19	18	17	16
	AVG		RESET	FIFOCLR	RES2FIFO	-	TRIG
15	14	13	12	11	10	9	8
TRIG		CONT	EN	CH11	CH10	СН9	CH8
7	6	5	4	3	2	1	0
CH7	СН6	CH5	CH4	СНЗ	CH2	CH1	СНО

位域	名称	描述
31:25	-	-
		一次启动 ADC 采样次数配置寄存器
		0000: 1
24.24	AVG	采样
24:21	AVG	0001: 2 次采样并取平均
		0011:4 次采样并取平均
		0111:8次采样并取平均
		1111: 16 次采样并取平均
		其余配置: 保留
	RESET	ADC 复位,写入 1 后复位生效,需要再次写入 0 清除复位
20		0: 复位无效
		1: 复位有效
		FIFO 清除使能
19	FIFOCLR	0:FIFO 正常工作
		1: FIFO 复位
	RES2FIFO	采样数据存储位置
		0:采样结果存储为通道模式,采样完成后存储在对应通道数据 DATAx 寄存器
18		1:采样结果存储为 FIFO 模式,采集完成所有数据均存储于 FIFODR,数据
		Bit[15:12]为通道号
		注:DMA 模式必须使用 FIFO 模式

		3VVIVIZ11 示为j
		DMA 使能,高电平有效
		仅支持 FIFO 模式
17	DMAEN	0:只能通过 CPU 读取 ADCC_DATA_FIFO;
		1:只能通过 DMA 读取 ADCC_DATA_FIFO;
		ADC triger 方式选择
		000: CPU 触发
		001: PWM 触发
16:14	TRIG	010: TIMER0 触发
		011: TIMER1 触发
		其余配置: 保留
		ADC 工作模式(只在 CPU 触发方式下有效)
13	CONT	0: 单次模式
		1: 连续模式
		ADC 使能
12	EN	1: 使能
		0: 禁能
		ADC 通道 11 选择控制,RO,由硬件自动写入
		0: 通道未选中
		1: 通道选中
11	CH11	注 1: 此 bit 是只读寄存器,显示当前状态下 ADC 采样时各通道是否有效
		注 2:该值反映的值为 CHSEL 寄存器中的配置值,当 PWM 触发使能过程中,该值
		为 CHSEL.PWM;当 CPU 触发使能过程中,该值为 CHSEL.CPU
	CH10	ADC 通道 10 选择控制,RO,由硬件自动写入
		0: 通道未选中
10		1: 通道选中
10		注 1: 此 bit 是只读寄存器,显示当前状态下 ADC 采样时各通道是否有效
		注 2:该值反映的值为 CHSEL 寄存器中的配置值,当 PWM 触发使能过程中,该值
		为 CHSEL.PWM;当 CPU 触发使能过程中,该值为 CHSEL.CPU
		ADC 通道 9 选择控制,RO,由硬件自动写入
		0: 通道未选中
	CH9	1: 通道选中
9	СПЭ	注 1: 此 bit 是只读寄存器,显示当前状态下 ADC 采样时各通道是否有效
		注 2:该值反映的值为 CHSEL 寄存器中的配置值,当 PWM 触发使能过程中,该值
		为 CHSEL.PWM;当 CPU 触发使能过程中,该值为 CHSEL.CPU
o		ADC 通道 8 选择控制,RO,由硬件自动写入
	СН8	0: 通道未选中
		1: 通道选中
		注 1: 此 bit 是只读寄存器,显示当前状态下 ADC 采样时各通道是否有效
		注 2:该值反映的值为 CHSEL 寄存器中的配置值,当 PWM 触发使能过程中,该值
		为 CHSEL.PWM;当 CPU 触发使能过程中,该值为 CHSEL.CPU

	11.5 1 10.10.10.10.10.10.10.10.10.10.10.10.10.1	SWIVIZII 余列
		ADC 通道 7 选择控制,RO,由硬件自动写入
		0:通道未选中
7	0.17	1:通道选中
	CH7	注 1:此 bit 是只读寄存器,显示当前状态下 ADC 采样时各通道是否有效
		注 2:该值反映的值为 CHSEL 寄存器中的配置值,当 PWM 触发使能过程中,该值
		为 CHSEL.PWM;当 CPU 触发使能过程中,该值为 CHSEL.CPU
		ADC 通道 6 选择控制,RO,由硬件自动写入
		0:通道未选中
		1:通道选中
6	CH6	注 1:此 bit 是只读寄存器,显示当前状态下 ADC 采样时各通道是否有效
		注 2:该值反映的值为 CHSEL 寄存器中的配置值,当 PWM 触发使能过程中,该值
		为 CHSEL.PWM;当 CPU 触发使能过程中,该值为 CHSEL.CPU
		ADC 通道 5 选择控制,RO,由硬件自动写入
		0:通道未选中
		1: 通道选中
5	CH5	注 1:此 bit 是只读寄存器,显示当前状态下 ADC 采样时各通道是否有效
		注 2:该值反映的值为 CHSEL 寄存器中的配置值,当 PWM 触发使能过程中,该值
		为 CHSEL.PWM;当 CPU 触发使能过程中,该值为 CHSEL.CPU
		ADC 通道 4 选择控制,RO,由硬件自动写入
		0:通道未选中
		1:通道选中
4	CH4	 注 1:此 bit 是只读寄存器,显示当前状态下 ADC 采样时各通道是否有效
		 注 2:该值反映的值为 CHSEL 寄存器中的配置值,当 PWM 触发使能过程中,该值
		为 CHSEL.PWM;当 CPU 触发使能过程中,该值为 CHSEL.CPU
		ADC 通道 3 选择控制,RO,由硬件自动写入
		0:通道未选中
		1: 通道选中
3	CH3	注 1:此 bit 是只读寄存器,显示当前状态下 ADC 采样时各通道是否有效
		 注 2:该值反映的值为 CHSEL 寄存器中的配置值,当 PWM 触发使能过程中,该值
		为 CHSEL.PWM;当 CPU 触发使能过程中,该值为 CHSEL.CPU
		ADC 通道 2 选择控制,RO,由硬件自动写入
		0:通道未选中
		1: 通道选中
2	CH2	 注 1:此 bit 是只读寄存器,显示当前状态下 ADC 采样时各通道是否有效
		 注 2:该值反映的值为 CHSEL 寄存器中的配置值,当 PWM 触发使能过程中,该值
		为 CHSEL.PWM;当 CPU 触发使能过程中,该值为 CHSEL.CPU
		ADC 通道 1 选择控制,RO,由硬件自动写入
		0:通道未选中
		1: 通道选中
1	CH1	注 1: 此 bit 是只读寄存器,显示当前状态下 ADC 采样时各通道是否有效
		注 2:该值反映的值为 CHSEL 寄存器中的配置值,当 PWM 触发使能过程中,该值
		为 CHSEL.PWM; 当 CPU 触发使能过程中,该值为 CHSEL.CPU
		The state of the s

SWM211 系列

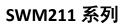
		ADC 通道 0 选择控制,RO,由硬件自动写入
		0: 通道未选中
	CHO	1: 通道选中
ľ	0 CH0	注 1:此 bit 是只读寄存器,显示当前状态下 ADC 采样时各通道是否有效
		注 2:该值反映的值为 CHSEL 寄存器中的配置值,当 PWM 触发使能过程中,该值
		为 CHSEL.PWM;当 CPU 触发使能过程中,该值为 CHSEL.CPU。

启动寄存器 START

寄存器	偏移	类型	复位值	描述
START	0x04	R/W	00	ADC 启动寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
	-		BUSY		-		GO

位域	名称	描述
31:5	-	-
		ADC 工作状态标识
4	BUSY	1: 采样进行
		0: 空闲
3:1	-	-
		ADC 启动信号(只在 CPU 触发方式下有效)
		该位写 1,则启动一次转换。
		单次采样模式:该位置1后,将对有效通道依次轮询进行采样转换,并将转换的
0	GO	数据保存在相应通道的 FIFO 或寄存器中。转换完成后硬件会自动清零
	GO	多次采样模式:该位置 1 表示启动 ADC 转换,软件清零后停止转换
		多次模式下启动 ADC 转换后,将对有效通道依次轮询进行采样转换,并将转换的
		数据保存在相应通道的 FIFO 或寄存器中。每次转换完成后判断该位是否为 1,若
		为 1 则继续转换,若为 0 则停止转换。



中断寄存器 IE

寄存器	偏移	类型	复位值	描述
IE	0x08	R/W	00	ADC 中断使能寄存器

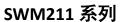
31	30	29	28	27	26	25	24
		-	FIFOF	FIFOHF	FIFOOV		
23	22	21	20	19	18	17	16
CH110VF	CH11EOC	CH100VF	CH10EOC	CH9OVF	СН9ЕОС	CH8OVF	CH8EOC
15	14	13	12	11	10	9	8
CH7OVF	CH7EOC	CH6OVF	CH6EOC	CH5OVF	CH5EOC	CH4OVF	CH4EOC
7	6	5	4	3	2	1	0
CH3OVF	CH3EOC	CH2OVF	CH2EOC	CH10VF	CH1EOC	CH0OVF	CH0EOC

位域	名称	描述
31:27	-	-
		ADC 数据 FIFO 满中断使能
26	FIFOF	1: 使能
		0: 禁能
		ADC 数据 FIFO 半满中断使能
25	FIFOHF	1: 使能
		0: 禁能
		ADC 数据 FIFO 溢出中断使能
24	FIFOOV	1: 使能
		0: 禁能
		ADC 通道 11 数据寄存器溢出中断使能
23	CH11OVF	1: 使能
		0: 禁能
		ADC 通道 11 数据转换完成中断使能
22	CH11EOC	1: 使能
		0: 禁能
		ADC 通道 10 数据寄存器溢出中断使能
21	CH10OVF	1: 使能
		0: 禁能
		ADC 通道 10 数据转换完成中断使能
20	CH10EOC	1: 使能
		0: 禁能
		ADC 通道 9 数据寄存器溢出中断使能
19	CH9OVF	1: 使能
		0: 禁能

		3	VV IVIZII ホッリ
		ADC 通道 9 数据转换完成中断使能	
18	СН9ЕОС	1: 使能	
		0: 禁能	
		ADC 通道 8 数据寄存器溢出中断使能	
17	CH8OVF	1: 使能	
		0: 禁能	
		ADC 通道 8 数据转换完成中断使能	
16	СН8ЕОС	1: 使能	
		0: 禁能	
		ADC 通道 7 数据寄存器溢出中断使能	
15	CH7OVF	1: 使能	
		0: 禁能	
		ADC 通道 7 数据转换完成中断使能	
14	СН7ЕОС	1: 使能	
		0: 禁能	
		ADC 通道 6 数据寄存器溢出中断使能	
13	CH6OVF	1: 使能	
		0: 禁能	
		ADC 通道 6 数据转换完成中断使能	
12	СН6ЕОС	1: 使能	
		0: 禁能	
		ADC 通道 5 数据寄存器溢出中断使能	
11	CH5OVF	1: 使能	
		0: 禁能	
		ADC 通道 5 数据转换完成中断使能	
10	СН5ЕОС	1: 使能	
		0: 禁能	
		ADC 通道 4 数据寄存器溢出中断使能	
9	CH4OVF	1: 使能	
		0: 禁能	
		ADC 通道 4 数据转换完成中断使能	
8	CH4EOC	1: 使能	
		0: 禁能	
		ADC 通道 3 数据寄存器溢出中断使能	
7	CH3OVF	1: 使能	
		0: 禁能	
		ADC 通道 3 数据转换完成中断使能	
6	СНЗЕОС	1: 使能	
		0: 禁能	
		ADC 通道 2 数据寄存器溢出中断使能	
5	CH2OVF	1: 使能	
		0: 禁能	

SWM211 系列

	ADC 通道 2 数据转换完成中断使能
CH2EOC	1: 使能
	0: 禁能
	ADC 通道 1 数据寄存器溢出中断使能
CH1OVF	1: 使能
	0: 禁能
	ADC 通道 1 数据转换完成中断使能
CH1EOC	1: 使能
	0: 禁能
	ADC 通道 0 数据寄存器溢出中断使能
CH0OVF	1: 使能
	0: 禁能
	ADC 通道 0 数据转换完成中断使能
СН0ЕОС	1: 使能
	0: 禁能
	CH1OVF CH1EOC CH0OVF



中断状态寄存器 IF

寄存器	偏移	类型	复位值	描述
IF	0x0C	R/W1C	00	ADC 中断状态寄存器

31	30	29	28	27	26	25	24
		-	FIFOF	FIFOHF	FIFOOV		
23	22	21	20	19	18	17	16
CH110VF	CH11EOC	CH100VF	CH10EOC	CH9OVF	СН9ЕОС	CH8OVF	CH8EOC
15	14	13	12	11	10	9	8
CH7OVF	CH7EOC	CH6OVF	CH6EOC	CH5OVF	CH5EOC	CH4OVF	CH4EOC
7	6	5	4	3	2	1	0
CH3OVF	СНЗЕОС	CH2OVF	CH2EOC	CH10VF	CH1EOC	CH00VF	CH0EOC

位域	名称	描述
31:27	-	-
		ADC 数据 FIFO 满中断状态,写 1 清除
26	FIFOF	0: 未产生
		1: 产生中断
		ADC 数据 FIFO 半满中断状态,写 1 清除
25	FIFOHF	0: 未产生
		1: 产生中断
		ADC 数据 FIFO 溢出中断状态,写 1 清除
24	FIFOOV	0: 未产生
		1: 产生中断
		ADC 通道 11 数据寄存器溢出中断状态,写 1 清除
23	CH11OVF	0: 未产生
		1: 产生中断
		ADC 通道 11 数据转换完成中断状态,写 1 清除
22	CH11EOC	0: 未产生
		1: 产生中断
		ADC 通道 10 数据寄存器溢出中断状态,写 1 清除
21	CH10OVF	0: 未产生
		1: 产生中断
		ADC 通道 10 数据转换完成中断状态,写 1 清除
20	CH10EOC	0: 未产生
		1: 产生中断
		ADC 通道 9 数据寄存器溢出中断状态,写 1 清除
19	CH9OVF	0: 未产生
		1: 产生中断

			SWIVIZII 永列
		ADC 通道 9 数据转换完成中断状态,写 1 清除	
18	СН9ЕОС	0: 未产生	
		1: 产生中断	
		ADC 通道 8 数据寄存器溢出中断状态,写 1 清除	
17	CH8OVF	0: 未产生	
		1: 产生中断	
		ADC 通道 8 数据转换完成中断状态,写 1 清除	
16	CH8EOC	0: 未产生	
		1: 产生中断	
		ADC 通道 7 数据寄存器溢出中断状态,写 1 清除	
15	CH7OVF	0: 未产生	
		1: 产生中断	
		ADC 通道 7 数据转换完成中断状态,写 1 清除	
14	СН7ЕОС	0: 未产生	
		1: 产生中断	
		ADC 通道 6 数据寄存器溢出中断状态,写 1 清除	
13	CH6OVF	0: 未产生	
		1: 产生中断	
		ADC 通道 6 数据转换完成中断状态,写 1 清除	
12	СН6ЕОС	0: 未产生	
		1: 产生中断	
		ADC 通道 5 数据寄存器溢出中断状态,写 1 清除	
11	CH5OVF	0: 未产生	
		1: 产生中断	
		ADC 通道 5 数据转换完成中断状态,写 1 清除	
10	СН5ЕОС	0: 未产生	
		1: 产生中断	
		ADC 通道 4 数据寄存器溢出中断状态,写 1 清除	
9	CH4OVF	0: 未产生	
		1: 产生中断	
		ADC 通道 4 数据转换完成中断状态,写 1 清除	
8	CH4EOC	0: 未产生	
		1: 产生中断	
		ADC 通道 3 数据寄存器溢出中断状态,写 1 清除	
7	CH3OVF	0: 未产生	
		1: 产生中断	
		ADC 通道 3 数据转换完成中断状态,写 1 清除	
6	СНЗЕОС	0: 未产生	
		1: 产生中断	
		ADC 通道 2 数据寄存器溢出中断状态,写 1 清除	
5	CH2OVF	0: 未产生	
		1: 产生中断	

SWM211 系列

		ADC 通道 2 数据转换完成中断状态,写 1 清除				
4	CH2EOC	0: 未产生				
		1: 产生中断				
		ADC 通道 1 数据寄存器溢出中断状态,写 1 清除				
3	CH1OVF	0: 未产生				
		1: 产生中断				
		ADC 通道 1 数据转换完成中断状态,写 1 清除				
2	CH1EOC	0: 未产生				
		1: 产生中断				
		ADC 通道 0 数据寄存器溢出中断状态,写 1 清除				
1	CH0OVF	0: 未产生				
		1: 产生中断				
		ADC 通道 0 数据转换完成中断状态,写 1 清除				
0	СНОЕОС	0: 未产生				
		1: 产生中断				

通道状态寄存器 STATx(0~11)

世 但	IT HE SIA	17(0 11)						
寄存器	偏移	类型	复位值	描述				
STATO	0x10	R/W	0	ADC 通道	0 状态寄存器			
寄存器	偏移	类型	复位值	描述	描述			
STAT1	0x20	R/W	0	ADC 通道	1 状态寄存器			
寄存器	偏移	类型	复位值	描述				
STAT2	0x30	R/W	0	ADC 通道	2 状态寄存器			
寄存器	偏移	类型	复位值	描述				
STAT3	0x40	R/W	0	ADC 通道	3 状态寄存器			
寄存器	偏移	类型	复位值	描述				
STAT4	0x50	R/W	0	ADC 通道	4 状态寄存器			
寄存器	偏移	类型	复位值	描述				
STAT5	0x60	R/W	0	ADC 通道	5 状态寄存器			
寄存器	偏移	类型	复位值	描述	描述			
STAT6	0x70	R/W	0	ADC 通道 6 状态寄存器				
寄存器	偏移	类型	复位值	描述	描述			
STAT7	0x80	R/W	0	ADC 通道	ADC 通道 7 状态寄存器			
寄存器	偏移	类型	复位值	描述	描述			
STAT8	0x18	R/W	0	ADC 通道	ADC 通道 8 状态寄存器			
寄存器	偏移	类型	复位值	描述	描述			
STAT9	0x28	R/W	0	ADC 通道	ADC 通道 9 状态寄存器			
寄存器	偏移	类型	复位值	描述	描述			
STAT10	0x38	R/W	0	ADC 通道	ADC 通道 10 状态寄存器			
寄存器偏移类型		类型	复位值	描述	描述			
STAT11	0x48	R/W	0	ADC 通道	11 状态寄存器			
31	30	29	28	27	26	25	24	
				-				
23	22	21	20	19	18	17	16	
					10			

SWM211 系列

				-			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
			-			OVF	EOC

位域	名称	描述			
31:2	-	-			
		ADC 通道 x 数据寄存器溢出标志			
4	OVF	1: 溢出			
1		0: 未溢出			
		读数据寄存器清除			
		ADC 通道 x 数据转换完成标志,写 1 清除			
0	EOC	1: ADC 对通道 x 一次采样转换完成			
		0:转换未完成			

通道数据寄存器 DATAx(0~11)

世 世	13 HH	17X(0 II.						
寄存器	偏移	类型	复位值	描述				
DATA0	0x14	R/W	0	ADC 通道	0 数据寄存器			
寄存器	偏移	类型	复位值	描述	描述			
DATA1	0x24	R/W	0	ADC 通道	1 数据寄存器			
寄存器	偏移	类型	复位值	描述				
DATA2	0x34	R/W	0	ADC 通道	2 数据寄存器			
寄存器	偏移	类型	复位值	描述				
DATA3	0x44	R/W	0	ADC 通道	3 数据寄存器			
寄存器	偏移	类型	复位值	描述				
DATA4	0x54	R/W	0	ADC 通道	4 数据寄存器			
	<u> </u>	l	ı	T .				
寄存器	偏移	类型	复位值	描述				
DATA5	0x64	R/W	0	ADC 通道	5 数据寄存器			
	l .	<u>, </u>		l .				
寄存器	偏移	类型	复位值	描述	描述			
DATA6	0x74	R/W	0	ADC 通道	ADC 通道 6 数据寄存器			
寄存器	偏移	类型	复位值	描述	描述			
DATA7	0x84	R/W	0	ADC 通道	ADC 通道 7 数据寄存器			
寄存器	偏移	类型	复位值	描述	描述			
DATA8	0x1c	R/W	0	ADC 通道	ADC 通道 8 数据寄存器			
寄存器	偏移	类型	复位值	描述	描述			
DATA9	0x2c	R/W	0	ADC 通道	ADC 通道 9 数据寄存器			
	•		•	•				
寄存器	偏移	类型	复位值	描述	描述			
DATA10	0x3c	R/W	0	ADC 通道	ADC 通道 10 数据寄存器			
	•	•	•					
寄存器 偏移 类型 复位值		描述						
DATA11	0x4c	R/W	0	ADC 通道	11 数据寄存器			
	L	l		l				
31	30	29	28	27	26	25	24	
				-				
22	22	24	20	10	10	47	15	
23	22	21	20	19	18	17	16	

SWM211 系列

-								
15	14	13	12	11	10	9	8	
	NUM				VAL			
7 6 5 4			3	2	1	0		
VAL								

位域	名称	描述
31:16	-	-
		ADC 数据对应的通道编号
		0000: 通道 0
		0001:通道 1
		0010:通道 2
		0011: 通道 3
		0100: 通道 4
15:12	NUM	0101:通道 5
		0110: 通道 6
		0111: 通道 7
		1000: 通道 8
		1001:通道 9
		1010:通道 10
		1011: 通道 11
11:0	VAL	ADC 通道 x 数据寄存器
11.0	VAL	注:溢出后,再次转换的数据会覆盖旧数据

ADC 通道配置寄存器 CHSEL

寄存器	N扁 164.	类型	复位值	描述
CHSEL	0xd0		0	ADC 通道配置寄存器

31	30	29	28	27	26	25	24
	-	-			PW	/M	
23	22	21	20	19	18	17	16
PWM							
15	14	13	12	11	10	9	8
	-	-			CF	PU	
7	6	5	4	3	2	1	0
СРИ							

位域	名称	描述
31:28	-	
		PWM 启动 ADC 采样时的通道号,对应位置 1 则指定通道启动采样
		BIT27: CH11
		BIT26: CH10
		BIT25: CH9
		BIT24: CH8
		BIT23: CH7
		BIT22: CH6
		BIT21: CH5
27:16	PWM	BIT20: CH4
27:16	PVVIVI	BIT19: CH3
		BIT18: CH2
		BIT17: CH1
		BIT16: CH0
		注 1:采样过程中 CTRL 寄存器 bit[11:0]为此处配置值
		注 2:配置 pwm 触发 ADC 采样使能且 PWM 触发信号有效时,实际发生的 ADC 采
		样通道会自动切换为 CHSEL.PWM 值
		注 3:配置 pwm 触发 ADC 采样,CPU 触发通道值与 PWM 通道触发通道值需一致
		才能触发 ADC
15:12	-	-

SWM211 系列

		CPU 启动 ADC 采样的通道号
		BIT11: CH11
		BIT10: CH10
		BIT9: CH9
		віт8: СН8
		BIT7: CH7
		віт6: СН6
11:0	CPU	BIT5: CH5
11:0		BIT4: CH4
		вітз: снз
		BIT2: CH2
		BIT1: CH1
		віто: сно
		注 1:启动 CPU 触发后,采样过程中 CTRL 寄存器 bit[11:0]为此处配置值
		注 2:当 CPU 启动了 ADC 采样过程中,如遇到 PWM 触发 ADC 的启动信号,PWM
		信号被忽略

FIFO 状态寄存器 FIFOSR

寄存器	偏移	类型	复位值	描述
FIFOSR	0x90	R/W	0	ADC FIFO 状态寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
	-						
7	6	5	4	3	2	1	0
-	LEVEL			EMPTY	PULL	HF	OVF

位域	名称	
31:7	-	-
		ADC 数据 FIFO LEVEL 标志
		000: FIFO 有 0 个数据
		001: FIFO 有 1 个数据
		010: FIFO 有 2 个数据
6:4	LEVEL	011: FIFO 有 3 个数据
		100: FIFO 有 4 个数据
		101: FIFO 有 5 个数据
		110: FIFO 有 6 个数据
		111: FIFO 有 7 个数据
		ADC 数据 FIFO 空标志
3	EMPTY	1: FIFO 호
		0: FIFO 非空
		ADC 数据 FIFO 满标志
2	FULL	1: FIFO 满
		0:FIFO 非满
		ADC 数据 FIFO 半满标志
1	HF	1: FIFO 半满
		0:FIFO 满或未达到半满
		ADC 数据 FIFO 溢出标志
0	OVF	1: FIFO 出现溢出
		0: FIFO 未溢出

所有通道 FIFO 数据寄存器 FIFODR

寄存器	偏移	类型	复位值	描述
FIFODR	0x94		0	ADC 所有通道数据寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
	NUM				V	AL	
7	6	5	4	3	2	1	0
	VAL						

位域	名称	描述
31:16	-	_
		ADC 数据对应的通道编号
		0000: 通道 0
		0001: 通道 1
		0010:通道 2
		0011: 通道 3
		0100:通道 4
15:12	NUM	0101:通道 5
		0110:通道 6
		0111: 通道 7
		1000:通道 8
		1001:通道 9
		1010:通道 10
		1011:通道 11
11:0	VAL	ADC 通道 x 数据 FIFO 寄存器
11.0	VAL	注:溢出后,再次转换的数据会被丢掉

配置寄存器 CTRL2

寄存器	偏移	类型	复位值	描述
CTRL2	0ха0	RW	0x0	ADC 配置寄存器 2

31	30	29	28	27	26	25	24
	-		EREFSEL			-	
23	22	21	20	19	18	17	16
		-			A	DJL	
15	14	13	12	11	10	9	8
	AD						
7	6	5	4	3	2	1	0
		-			LCHSEL	-	CLKSEL

位域	名称	描述
31:29	-	-
		External Reference Select,VREFP 和 VFEFN 选择
28	EREFSEL	0: VREFP和 VREFN
		1: VDD5 和 VSS
27:20	-	-
19:16	ADJL	ADC Auto Low Timing Adjust 配置
15:8	ADJH	ADC Auto High Timing Adjust 配置
7:3	-	-
		ADC CLK LATCH 上升/下降选择
2	LCHSEL	0: 上升沿
		1: 下降沿
1	-	-
0	CLKCLI	0:SYSCON 的 SARADC 采样时钟源作为 ADC 的时钟输入;
U	CLKSEL	1;选择外部晶振作为 ADC 的时钟输入

配置寄存器 CTRL3

寄存器	偏移	类型	复位值	描述
CTRL3	0xa4	RW	0x0	ADC 配置寄存器 3

31	30	29	28	27	26	25	24
-	CLKI	CLKDIV1			CLKDIV2		
23	22	21	20	19	18	17	16
		-				IREFSEL	
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
		-			REF	SEL	-

位域	名称	描述
31	-	-
		RC Clock Post Divide
		00: 4 分频
30:29	CLKDIV1	01: 2 分频
		10: 1分频
		11: 保留
		RC clock input divider ratio(对分频时钟的再分频)
		1 对应 1 分频,以此类推
		00001: 1 分频
		00010: 2 分频
		00011: 3 分频
		00100:4 分频
		00101: 5 分频
28:24	CLKDIV2	00110:6 分频
		00111: 7 分频
		01000: 8 分频
		01001: 9 分频
		01010:10 分频
		01011:11 分频
		01100:12 分频
		01101:13 分频
23:19	-	-
		内置基准使能
18:16	IREFSEL	111: 3.6V
19:10	INEFSEL	其余配置:保留
		切换至内部基准时,需要写入 111 保证基准档位正确

SWM211 系列

15:3	-	-
		ADC 参考选择
2.1		00: 内部基准
2:1	REFSEL	11: 外部基准
		其余配置: 保留
0	-	-

配置寄存器 CTRL4

寄存器	偏移	类型	复位值	描述
CTRL3	0x1a8		0	ADC 配置寄存器 4

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
		-			EREFSEL		-

位域	名称	描述
31:3	-	_
		ADC 外部基准选择
2	EREFSEL	O: VERFP
		1: VDD
1:0	-	-

PWM 通道触发 ADC 屏蔽寄存器 TRGMSK

寄存器	偏移	类型	复位值	描述
TRGMSK 0xb0	OvbO	R/W	0	PWM 通道触发 ADC 屏蔽寄存器,可通过此寄存器区
	OXBO R,			分不同 ADC 的 PWM 触发通道

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
		-			PWM1	-	PWM0

位域	名称	描述		
31:3	-	-		
		PWM1 触发 ADC 屏蔽寄存器		
2	PWM1	0: 不屏蔽		
		1: 屏蔽		
1	-	-		
		PWM0 触发 ADC 屏蔽寄存器		
0	PWM0	0: 不屏蔽		
		1: 屏蔽		

ADC 数据调整寄存器 CALIBSET

寄存器	偏移	类型	复位值	描述
CALIBSET	0x1f4	R/W	0	CALIB 配置寄存器

31	30	29	28	27	26	25	24
			-				К
23	22	21	20	19	18	17	16
			1	<			
15	14	13	12	11	10	9	8
			-				OFFSET
	6	5	4	3	2	1	0
7	D	9	4	,		-	

位域	名称	描述
31:25	-	_
24:16	K	ADC 数据调整的 K 值(K 始终大于 1 小于 1.511)的小数部分 例如:要校准的 K 值为 1.230,则该寄存器直接写入 230 即可。
15:9	-	_
8:0	OFFSET	ADC 数据调整的 OFFSET 值

ADC 数据调整使能寄存器 CALIBEN

寄存器	偏移	类型	复位值	描述
CALIBEN	0x1f8	R/W	0	CALIB 使能寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
			-			К	OFFSET

位域	名称	描述
312	-	-
		ADC_CALIB_SET 寄存器 K 配置数据是否有效
1	К	0: 数据无效
		1: 数据有效
		ADC_CALIB_SET 寄存器 OFFSET 配置数据是否有效
0	OFFSET	0: 数据无效
		1: 数据有效

6.20 直接内存存取(DMA)控制器

6.20.1概述

SWM211 系列所有型号 DMA 模块操作均相同,用来提供特定外设(UART、SPI、ADC)和存储器之间或总线地址和存储器(SRAM)之间的高速数据传输,无需 CPU 干涉,数据可以快速的通过 DMA 传输,从而节省了 CPU 的资源来做其他操作。

DMA 传输规则可按字传输,单次可传输字数多达 4096Word。数据交换过程中,无需软件参与。本文中 RX 指 MIU0 到 MIU1 的数据搬移,TX 指 MIU1 到 MIU0 的数据搬移。

6.20.2特性

- 支持 UART/SPI/ADC 数据交互
- 支持总线地址至 SRAM 间数据交互
- 支持多种传输模式及数据单位
- 支持 TIMER 触发使能
- 支持三种地址变化方式:递增,固定, scatter gathe
- Master 接口支持 BYTE、HALFWORD 和 WORD 操作
- Slave 接口只支持 WORD 操作

6.20.3 模块结构框图

DMA 模块结构如图 6-99 所示:

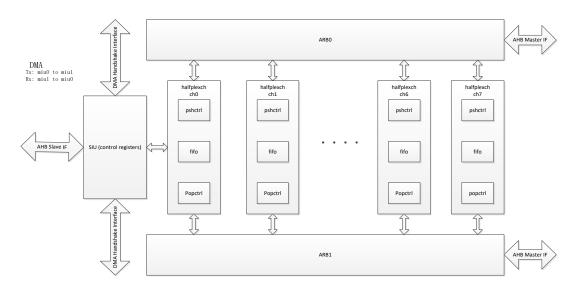


图 6-99 DMA 模块结构图

SIU 是 AHB slave 接口,MCU 通过这个接口配置相关的控制寄存器,同时也完成和外设之间的握手。

ARBO 和 ARB1 用于仲裁各个通道的数据传输请求。

HALFPLEXCH 是单向传输通道,在任意时刻只能配置为发送或接收方向。

6.20.4 功能描述

通道选择

DMA 共有 2 组 4 个通道, 可同时传输 4 组不同方向数据。通道与模块对应关系如表格 6-3 所示:

M0 通道 对应外设 M1 通道 对应外设 UARTO RX CH0 配置 00 UARTO TX CHO 配置 00 SPI0 TX CH0 配置 01 CHO 配置 01 SPIO RX CH0 配置 02 UART1 TX CHO 配置 02 UART1 RX CH0 配置 03 SPI1_TX CH0 配置 03 SPI1_RX CH1 配置 00 UARTO TX CH1 配置 00 UARTO RX CH1 配置 01 SPI0 TX CH1 配置 01 SPIO RX CH1 配置 02 UART1 TX CH1 配置 02 UART1 RX CH1 配置 03 CH1 配置 03 SARADC0

表格 6-3 DMA 各通道操作明细

注: 在一个时间段内,同时使用的外设必须只能占用在不同的通道上,否则不能通过中断状态来区分哪个外设发生的事件。

模式选择

支持三种地址变化方式:递增,固定,scatter gather。可通过配置 AMn 寄存器,分别配置源地址模式和目的地址模式,并可分别配置源和目的地址的位宽和传输模式。

递增

传输单位为字节时,从 SRC 指定地址+n 处取数据(向 DST 指定地址+n 处存数据),n 表示第 n 个数据

传输单位为半字时,从 SRC 指定地址+2n 处取数据(向 DST 指定地址+2n 处存数据),n 表示第 n 个数据

传输单位为 字 时,从 SRC 指定地址+4n 处取数据(向 DST 指定地址+4n 处存数据),n 表示第 n 个数据

固定

固定从 SRC 指定地址处取数据、固定向 DST 指定地址处存数据。

scatter gather

源地址模式:

从 SRCn 开始, 传输总长度 1/4 的数据; 跳转到 SRCSGADDRn1 地址开始, 再传输总长度 1/4 的数据; 跳转到 SRCSGADDRn2 地址开始, 再传输总长度 1/4 的数据; 跳转到 SRCSGADDRn3 地址开始, 直到全部数据传输结束。

以源地址模式为 scatter gather 为例, 传输 40 个字过程如下:

第一步、从 SRCn 指定地址处取 10 个字传输,

第二步、从 SRCSGADDRn1 指定地址处取 10 个字传输

第三步、从 SRCSGADDRn2 指定地址处取 10 个字传输

第四步、从 SRCSGADDRn3 指定地址处取 10 个字传输

目的地址模式:

从 DSTn0 开始,传输总长度 1/4 的数据; 跳转到 DSTSGADDRn1 地址开始,再传输总长度 1/4 的数据; 跳转到 DSTSGADDRn2 地址开始,再传输总长度 1/4 的数据; 跳转到 DSTSGADDRn3 地址开始,直到全部数据传输结束。

以目的地址模式为 scatter gather 为例, 传输 40 个字过程如下:

第一步、向 DSTn 指定地址处存 10 个字传输,

第二步、向 DSTSGADDRn1 指定地址处存 10 个字传输

第三步、向 DSTSGADDRn2 指定地址处存 10 个字传输

第四步、向 DSTSGADDRn3 指定地址处存 10 个字传输

三种模式下 DMA 搬运 40 个字流程如图 6-100 所示:

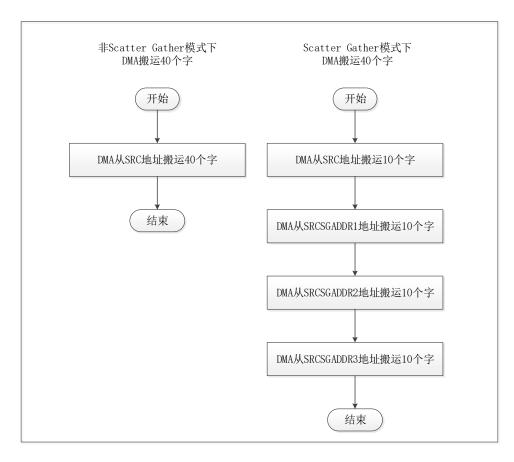


图 6-100 DMA 搬运 40 个字流程图

握手信号选择

DMA 通道可选择 M1/M0 总线上是否采用握手信号,可通过 MUXn 寄存器对应位来选择。

握手

需要通过握手信号进行信息交换

DMA 通道可通过握手信号进行信息交换,选择由哪个外设的硬件信号来控制源或目标外设之间的传输,具体外设可以通过 MUXn 寄存器对应位来选择。

外设握手信号详情参考表格 6-3。

具体外设有 SPIO/SPI1、UARTO/UART1/UART2/UART3、ADCO/ADC1。在一个时间段内,可同时使用 多个外设,但同时使用的外设必须占用在不同的通道上,否则不能通过中断状态来区分哪个外设 发生的事件。

非握手

非握手状态下所有的地址都可以搬运,可以任何地址到任何地址。

握手、非握手传输示意图如图 6-101 所示:

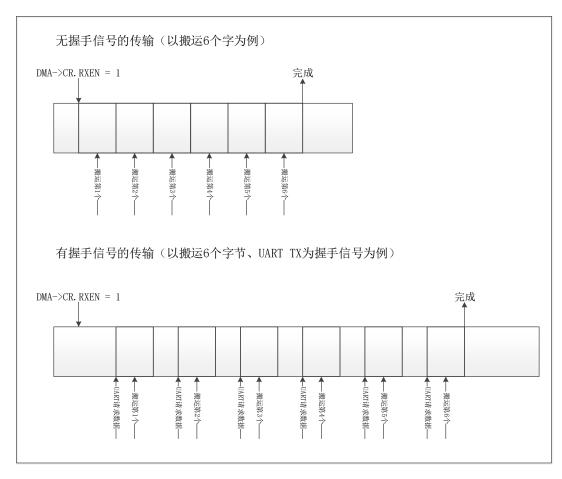


图 6-101 握手、非握手信号传输图

启动方式

DMA 通道启动传输的方式有两种,一种为通过软件操作 TXEN/RXEN 位启动、一种为通过外部 trigger 信号启动,可通过配置 MUXn 寄存器来选择。

软件操作启动

软件操作可通过配置 CRn 寄存器中的 TXEN 活 RXEN 启动 DMA 传输。

外部 trigger 信号启动

外部 trigger 信号触发有 TMER0~8 及 ADC 转换完成触发 DMA,可通过配置 MUXn 寄存器选择使用哪个 TIMER 溢出信号触发、,且通道会等到外部 trigger 信号为高后才启动传输。

配置如下:

- 配置 DMA 模式, CRn 寄存器相应位
 - 单次模式, 传输完成后停止
 - 环形模式,传输完成后从头执行下一轮传输
- 配置源地址传输位宽, AMn 寄存器相应位
 - 字节
 - 半字
 - 字
- 配置传输长度, CRn 寄存器相应位
- 配置源地址、目的地址、SRCn、DSTn 寄存器
- 配置源和目标地址模式, AMn 寄存器相应位
 - 地址固定
 - 地址递增
 - scatter gather
- 配置通道由 trigger 信号启动,MUXn 相应位
- 配置信号由哪个 TIMER 溢出或者 ADC 数据转换完成信号触发 MUXn 相应位
- 初始化定时器或 ADC
- 启动定时器或 ADC

DMA 启动方式如图 6-102 所示:

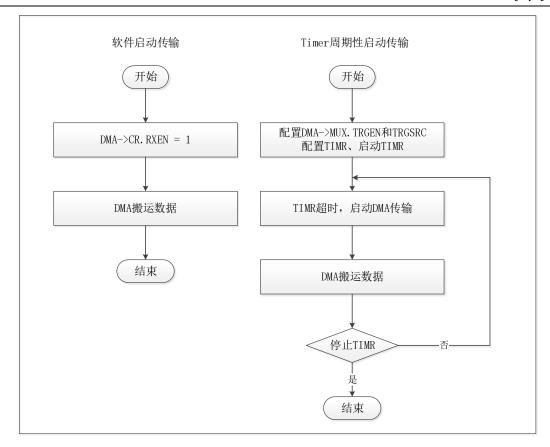


图 6-102 DMA 启动方式

中断处理

DMA 控制器模块 2 个通道均支持传输结束中断。DMA 初始化时如果配置了中断使能寄存器 IE, 当所配置通道传输完指定数据长度时会产生中断, 此时中断状态寄存器 IF 对应位自动置 1, 对该位写 1 则清除中断, 用户可通过读此寄存器来判断是否产生了中断。

DMA 各个通道还具备中断屏蔽功能。当配置了中断屏蔽寄存器 IM 时,即使数据传输结束,也不会产生中断。

优先级配置

可通过 PRI 寄存器来配置 DMA 各个通道的优先级。当多个通道同时请求传输时,先执行优先级高的。但当低优先级正在传输时,高优先级不会打断低优先级的传输。

6.20.5 寄存器映射

名称	偏移	类型	复位值	描述
DMA	BASE: 0x40000	0800		
EN	0x00	R/W	0	使能寄存器
IE	0x04	R/W	0	通道中断使能
IM	0x08	R/W	О	通道中断屏蔽
IF	0x0C	R/W1C	0	通道中断状态
DSTSGIE	0x10	RW	0	scatter gather,M0 总线一侧传输完成中断使能
DSTSGIM	0x14	RW	0	scatter gather M0 总线一侧传输完成中断屏蔽
DSTSGIF	0x18	R/W1C	0	scatter gather,M0 总线一侧传输完成中断状态
SRCSGIE	0x1C	RW	О	scatter gather M1 总线一侧传输完成中断使能
SRCSGIM	0x20	RW	0	scatter gather M1 总线一侧传输完成中断屏蔽
SRCSGIF	0x24	R/W1C	0	scatter gather,M1 总线一侧传输完成中断状态
PRI	0x3C	R/W	0	通道优先级设定
CRn	0x40*n + 0x00	R/W	О	通道控制
AMn	0x40*n + 0x04	R/W	О	通道地址模式
DSTn	0x40*n + 0x08	R/W	О	通道 n 目的地址寄存器
DSTSGADDRn1	0x40*n + 0xC	R/W	0	Destination Scatter Gather Address 通道 n 目的分散收集 地址 1
DSTSGADDRn2	0x40*n + 0x10	R/W	0	Destination Scatter Gather Address 通道 n 目的分散收集 地址 2
DSTSGADDRn3	0x40*n + 0x24	R/W	0	Destination Scatter Gather Address 通道 n 目的分散收集 地址 3
MUXn	0x40*n + 0x18	R/W	0	通道 n 握手信号选择寄存器
SRCn	0x40*n + 0x1C	R/W	0	通道 n 源地址寄存器
SRCSGADDRn1	0x40*n + 0x20	R/W	0	Source Scatter Gather Address 通道 n 源分散收集地址 1
SRCSGADDRn2	0x40*n + 0x24	R/W	0	Source Scatter Gather Address 通道 n 源分散收集地址 2
SRCSGADDRn3	0x40*n + 0x28	R/W	0	Source Scatter Gather Address 通道 n 源分散收集地址 3
DSTSR	0x40*n + 0x2C	RO	0	M0 通道 n 状态寄存器
SRCSR	0x40*n + 0x30	RO	0	M1 通道 n 状态寄存器

6.20.6 寄存器描述

DMA 使能寄存器 EN

寄存器	M 🔚 📆 🖫		复位值	描述
EN	0x00	R/W	0	使能寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
			-				EN

位域	名称	描述
31:1	-	-
		DMA 使能
0	EN	1: 使能 0: 禁能

DMA 中断使能寄存器 IE

寄存器	偏移	类型	复位值	描述
IE	0x04		0	通道中断使能

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
			-			CH1	СН0

位域	名称	描述
31:2	-	-
		通道 1 传输完成中断使能
1	CH1	1: 使能
		0: 禁能
		通道 0 传输完成中断使能
0	СН0	1: 使能
		0: 禁能

DMA 中断屏蔽寄存器 IM

寄存器	M SEE		复位值	描述
IM	0x08	R/W	0	通道中断屏蔽

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
			-			CH1	CH0

位域	名称	描述
31:2	-	-
		通道 1 传输完成中断屏蔽
1	CH1	1: 屏蔽
		0: 非屏蔽
		通道 0 传输完成中断屏蔽
0	СН0	1: 屏蔽
		0: 非屏蔽

DMA 中断状态寄存器 IF

寄存器	M = 184.	类型	复位值	描述
IF	0x0C		О	通道中断状态

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
			-			CH1	CH0

位域	名称	描述				
31:2	-	-				
		通道1传输完成中断,写1清零				
1	CH1	1: 中断发生				
		0: 中断未发生				
		通道0传输完成中断,写1清零				
0	СН0	1: 中断发生				
		0: 中断未发生				

M0 总线一侧传输完成中断使能寄存器 DSTSGIE

寄存器	偏移	类型	复位值	描述
DSTSGIE	0x10		0	scatter gather,M0 总线一侧传输完成中断使能

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
	-	-		CH1	CH1HF	СН0	CH0HF

位域	名称	描述				
31:4	-	-				
		CH1 M0 总线一侧传输完成中断使能				
3	CH1	1: 使能				
		0: 禁能				
		CH1 M0 总线一侧传输完成 1/2 中断使能				
2	CH1HF	1: 使能				
		0: 禁能				
		CH0 M0 总线一侧传输完成中断使能				
1	СН0	1: 使能				
		0: 禁能				
		CH0 M0 总线一侧传输完成 1/2 中断使能				
o	CH0HF	1: 使能				
		0: 禁能				

M0 总线一侧传输完成中断屏蔽寄存器 DSTSGIM

寄存器	偏移	类型	复位值	描述
DSTSGIM	0x14	RW	0	scatter gather M0 总线一侧传输完成中断屏蔽

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
	-	-		CH1	CH1HF	СН0	CH0HF

位域	名称	描述
31:4	-	-
		CH1 M0 总线一侧传输完成中断屏蔽
3	CH1	1: 屏蔽
		0: 非屏蔽
		CH1 M0 总线一侧传输完成 1/2 中断屏蔽
2	CH1HF	1: 屏蔽
		0: 非屏蔽
		CH0 M0 总线一侧传输完成中断屏蔽
1	СН0	1: 屏蔽
		0: 非屏蔽
		CH0 M0 总线一侧传输完成 1/2 中断屏蔽
0	СНОНЕ	1: 屏蔽
		0: 非屏蔽

M0 总线一侧传输完成中断状态寄存器 DSTSGIF

寄存器	偏移	类型	复位值	描述
DSTSGIF	0x18		0	scatter gather,M0 总线一侧传输完成中断状态

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
	-	-		CH1	CH1HF	СН0	CH0HF

位域	名称	描述					
31:4	-						
		CH1 M0 总线一侧传输完成中断状态,R/W1C					
3	CH1	1: 中断已发生					
		0: 中断未发生					
		CH1 M0 总线一侧传输完成 1/2 中断状态,R/W1C					
2	CH1HF	1: 中断已发生					
		0: 中断未发生					
		CH0 M1 总线一侧传输完成中断状态,R/W1C					
1	СН0	1: 中断已发生					
		0: 中断未发生					
		CH0 M1 总线一侧传输完成 1/2 中断状态,R/W1C					
o	СНОНЕ	1: 中断已发生					
		0: 中断未发生					

M1 总线一侧传输完成中断使能寄存器 SRCSGIE

寄存器	偏移	类型	复位值	描述
SRCSGIE	0x1C		0	scatter gather M1 总线一侧传输完成中断使能

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
	-	-		CH1	CH1HF	СН0	CH0HF

位域	名称	描述					
31:4	-						
		CH1 M1 总线一侧传输完成中断使能					
3	CH1	1: 使能					
		0: 禁能					
		CH1 M1 总线一侧传输完成 1/2 中断使能					
2	CH1HF	1: 使能					
		0: 禁能					
		CH0 M1 总线一侧传输完成中断使能					
1	СН0	1: 使能					
		0: 禁能					
		CH0 M1 总线一侧传输完成 1/2 中断使能					
o	CH0HF	1: 使能					
		0: 禁能					

M1 总线一侧传输完成中断屏蔽寄存器 SRCSGIM

寄存器	偏移	类型	复位值	描述
SRCSGIM	0x20		0	scatter gather M1 总线一侧传输完成中断屏蔽

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
	-	-		CH1	CH1HF	СН0	CH0HF

位域	名称	描述
31:4	-	-
		CH1 M1 总线一侧传输完成中断屏蔽
3	CH1	1: 屏蔽
		0: 非屏蔽
		CH1 M1 总线一侧传输完成 1/2 中断屏蔽
2	CH1HF	1: 屏蔽
		0: 非屏蔽
		CH0 M1 总线一侧传输完成中断屏蔽
1	СН0	1: 屏蔽
		0: 非屏蔽
		CH0 M1 总线一侧传输完成 1/2 中断屏蔽
0	СН0НF	1: 屏蔽
		0: 非屏蔽

M1 总线一侧传输完成中断状态寄存器 SRCSGIF

寄存器	偏移	类型	复位值	描述
SRCSGIF	0x24		0	scatter gather,M1 总线一侧传输完成中断状态

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
		-		CH1	CH1HF	CH0	CH0HF

位域	名称	描述
31:4	-	-
		CH1 M1 总线一侧传输完成中断状态,R/W1C
3	CH1	1: 中断已发生
		0: 中断未发生
		CH1 M1 总线一侧传输完成 1/2 中断状态,R/W1C
2	CH1HF	1: 中断已发生
		0: 中断未发生
		CH0 M1 总线一侧传输完成中断状态,R/W1C
1	сно	1: 中断已发生
		0: 中断未发生
		CH0 M1 总线一侧传输完成 1/2 中断状态,R/W1C
0	СН0НF	1: 中断已发生
		0: 中断未发生

通道优先设定寄存器 PRI

寄存器	M = 184.	类型	复位值	描述
PRI	0x3C		0	通道优先级设定

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
			-			CH1	CH0

位域	名称	描述
31:2	-	-
		DMA CH1 优先级
1	CH1	1: 该通道为高优先级
		0: 该通道为低优先级。
		DMA CH0 优先级
0	СН0	1: 该通道为高优先级
		0: 该通道为低优先级。

通道 n 控制寄存器 CRn

寄存器	偏移	类型	复位值	描述
CRn	0x40*n + 0x00	R/W	0	通道控制

31	30	29	28	27	26	25	24		
		-		SETPOP	AUTORE	TXEN	RXEN		
23	22	21	20	19	18	17	16		
				-					
15	14	13	12	11	10	9	8		
			LE	EN					
7	6	5	4	3	2	1	0		
	LEN								

位域	名称	描述
31:28	-	-
		步进传输。在 CHxTRIEN 为 1 时,每触发一次,传送一个单位的数据。
		注意:
		步进模式将屏蔽 OPBURST 配置,即在 OPBURST 配置为 INCR4 的情况下,仍然按
		SINGLE 传输。
27	SETPOP	步进模式不支持 M0 和 M1 配置不同的 OPWIDTH,因为 OPWIDTH 不同时,两组总
		线需要的 TRIG 次数不一样,会造成数据传输出错。
		步进模式下,当传输目标地址为固定地址模式,且 OPWIDTH 为 BYTE 或
		HALFWORD 时,每次传输的有效数据在写入端置于低位。(因为无法通过地址识别
		有效字节)
		Auto Restart,通道在传输完成后,是否自动重新启动
26	AUTORE	0: 传输完成后停止
		1: 传输完成后自动按照上一次的配置重新启动传输。
25	TXEN	TX 软件启动传输,传输方向为 SRC>DST
24	RXEN	RX 软件启动传输,传输方向为 DST>SRC
23:16	-	-
45.0	150	DMA 传输单元数量
15:0	LEN	0 对应 1 个单位长度

通道 n 地址模式寄存器 AMn

寄存器	偏移	类型	复位值	描述
AMn	0x40*n + 0x04	R/W	0	通道地址模式

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
	-		SRCBURST SRCBIT		SRCAM		
7	6	5	4	3	2	1	0
-		DSTBURST	DSTBIT		DSTAM		

位域	名称	描述
31:13	-	
		源地址传输模式
12	SRCBURST	0: Single
		1: Burst (Inc4)
		源地址传输宽度
		00:字节
11:10	SRCBIT	01: 半字
		10: 字
		11: 保留
		源地址模式
		00: 地址固定
9:8	SRCAM	01:地址递增
		10: scatter gather
		11: 保留
7:5	-	-
		目的地址传输类型
4	DSTBURST	0: Single
		1: Burst (Inc4)
		目的地址传输宽度
		00: 字节
3:2	DSTBIT	01: 半字
		10: 字
		11: 保留

SWM211 系列

		目的地址模式
		00: 地址固定
1:0	DSTAM	01: 地址递增
		10: scatter gather
		11: 保留

通道 n 目的地址寄存器 DSTn

寄存器	偏移	类型	复位值	描述
DSTn	0x40*n + 0x08	R/W	0	通道 n 目的地址寄存器

31	30	29	28	27	26	25	24			
	DST									
23	22	21	20	19	18	17	16			
	DST									
15	14	13	12	11	10	9	8			
	DST									
7	6	5	4	3	2	1	0			
	DST									

位域	名称	描述
31:0	DST	目的地址

通道 n 目的分散收集地址 1 寄存器 DSTSGADDRn1

寄存器偏移		类型	复位值	描述		
DSTSGADDRn1	0x40*n + 0xC	R/W	0	Destination Scatter Gather Address 通道 n 目的分散收 集地址 1		

31	30	29	28	27	26	25	24			
	DSTSGADDRn1									
23	22	21	20	19	18	17	16			
	DSTSGADDRn1									
15	14	13	12	11	10	9	8			
	DSTSGADDRn1									
7	6	5	4	3	2	1	0			
	DSTSGADDRn1									

位域	名称	描述
31:0	DSTSGADDRn1	Destination Scatter Gather Address 通道 n 目的分散收集地址 1

通道 n 目的分散收集地址 2 寄存器 DSTSGADDRn2

寄存器	偏移	类型	复位值	描述	
DSTSGADDRn2	0x40*n + 0x10 F	R/W	0	Destination Scatter Gather Address 通道 n 目的分散收	
			U	集地址 2	

31	30	29	28	27	26	25	24			
	DSTSGADDRn2									
23	22	21	20	19	18	17	16			
	DSTSGADDRn2									
15	14	13	12	11	10	9	8			
	DSTSGADDRn2									
7	6	5	4	3	2	1	0			
	DSTSGADDRn2									

位域	名称	描述
31:0	DSTSGADDRn2	Destination Scatter Gather Address 通道 n 目的分散收集地址 2

通道 n 目的分散收集地址寄存器 DSTSGADDRn3

寄存器	偏移	类型	复位值	描述	
DSTSGADDRn3	0x40*n + 0x24 R/	D /\A/	0	Destination Scatter Gather Address 通道 n 目的分散收	
		IN/ VV	U	集地址 3	

31	30	29	28	27	26	25	24			
	DSTSGADDRn3									
23	22	21	20	19	18	17	16			
	DSTSGADDRn3									
15	14	13	12	11	10	9	8			
	DSTSGADDRn3									
7	6	5	4	3	2	1	0			
	DSTSGADDRn3									

位域	名称	描述
31:0	DSTSGADDRn3	Destination Scatter Gather Address 通道 n 目的分散收集地址 3

通道 n 握手信号选择寄存器 MUXn

寄存器	偏移	类型	复位值	描述
MUXn	0x40*n + 0x18	R/W	0	通道 n 握手信号选择寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
	-	-		TRGEN	TRGSRC		
15	14	13	12	11	10	9	8
		-			M1TRGEN	M1TF	RGSRC
7	6	5	4	3	2	1	0
-				MOTRGEN	MOTE	RGSRC	

位域	名称	描述					
31:20	-	-					
		TIMER 触发功能使能					
19	TRGEN	1:使能,由 TIMER 完成触发					
		0:关闭,由启动信号 TRGEN 进行启动					
		TIMER 溢出信号触发配置					
		000: TIMERO					
		001: TIMER1					
		010: TIMER2					
18:16	TRGSRC	011: TIMER3					
		100: TIMER4					
		101: TIMER5					
		110: TIMER6					
		111: TIMER7					
15:11	-	-					
		M1 上硬件触发源使能					
10	M1TRGEN	1: 硬件触发					
		0:RXEN 软件启动					
		M1 上硬件触发源					
		11: 选择编号为 4*x+3 的握手信号					
9:8	M1TRGSRC	10:选择编号为 4*x+2 的握手信号					
	WITINGSRC	01:选择编号为 4*x+1 的握手信号					
		00:选择编号为 4*x 的握手信号					
		详见表格 6-3					
7:3	-						

SWM211 <u>系列</u>

		M0 上硬件触发源使能
2		1: 硬件触发
		0: TXEN 软件启动
		MO 上硬件触发源
	MOTRGSRC	11:选择编号为 4*x+3 的握手信号
1:0		10:选择编号为 4*x+2 的握手信号
1:0		01:选择编号为 4*x+1 的握手信号
		00:选择编号为 4*x 的握手信号
		详见表格 6-3

通道 n 源地址寄存器 SRCn

寄存器	偏移	类型	复位值	描述
SRCn	0x40*n + 0x1C	R/W	0	通道 n 源地址寄存器

31	30	29	28	27	26	25	24			
	SRCn									
23	22	21	20	19	18	17	16			
	SRCn									
15	14	13	12	11	10	9	8			
	SRCn									
7	6	5	4	3	2	1	0			
	SRCn									

位均	或	名称	描述
31:0	0	SRCn	源地址

通道 n 源分散收集地址 1 寄存器 SRCSGADDRn1

寄存器	偏移	类型	复位值	描述
SRCSGADDRn1	0x40*n + 0x20	R/W	0	Source Scatter Gather Address 通道 n 源分散收集地址 1

31	30	29	28	27	26	25	24		
	SRCSGADDRn1								
23	22	21	20	19	18	17	16		
	SRCSGADDRn1								
15	14	13	12	11	10	9	8		
	SRCSGADDRn1								
7	6	5	4	3	2	1	0		
	SRCSGADDRn1								

位域	名称	描述
31:0	SRCSGADDRn1	Source Scatter Gather Address 通道 n 源分散收集地址 1

通道 n 源分散收集地址 2 寄存器 SRCSGADDRn2

寄存器	偏移	类型	复位值	描述
SRCSGADDRn2	0x40*n + 0x24	R/W	0	Source Scatter Gather Address 通道 n 源分散收集地址 2

31	30	29	28	27	26	25	24			
	SRCSGADDRn2									
23	22	21	20	19	18	17	16			
	SRCSGADDRn2									
15	14	13	12	11	10	9	8			
	SRCSGADDRn2									
7	7 6 5 4 3 2 1 0									
	SRCSGADDRn2									

位域	名称	描述
31:0	SRCSGADDRn2	Source Scatter Gather Address 通道 n 源分散收集地址 2

通道 n 源分散收集地址 3 寄存器 SRCSGADDRn3

寄存器	偏移	类型	复位值	描述
SRCSGADDRn3	0x40*n + 0x28	R/W	0	Source Scatter Gather Address 通道 n 源分散收集地址 3

31	30	29	28	27	26	25	24		
	SRCSGADDRn3								
23	22	21	20	19	18	17	16		
			SRCSGA	ADDRn3					
15	14	13	12	11	10	9	8		
	SRCSGADDRn3								
7	6	5	4	3	2	1	0		
	SRCSGADDRn3								

位域	名称	描述
31:0	SRCSGADDRn3	Source Scatter Gather Address 通道 n 源分散收集地址 3

M0 通道 n 状态寄存器 DSTSR

寄存器	偏移	类型	复位值	描述
DSTSR	0x40*n + 0x2C	RO	0	M0 通道 n 状态寄存器

31	30	29	28	27	26	25	24	
DSTERR				-				
23	22	21	20	19	18	17	16	
				-				
15	14	13	12	11	10	9	8	
	DSTLEN							
7	6	5	4	3	2	1	0	
	DSTLEN							

位域	名称	描述	
31	DSTERR	M0 长度配置错误	
30:16	-	-	
15:0	DSTLEN	MO 剩余传输量	

M1 通道 n 状态寄存器 SRCSR

寄存器	偏移	类型	复位值	描述
SRCSR	0x40*n + 0x30	RO	0	M1 通道 n 状态寄存器

31	30	29	28	27	26	25	24
SRCERR				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
SRCLEN							
7	6	5	4	3	2	1	0
SRCLEN							

位域	名称	描述	
31	SRCERR	M1 长度配置错误	
30:16	-	-	
15:0	SRCLEN	M1 剩余传输量	

6.21 旋转坐标计算(CORDIC)

6.21.1 概述

SWM211 系列所有型号都包括该模块且操作均相同。使用前需使能 CORDIC 模块时钟。

6.21.2 特性

- 计算 sin 和 cos 时,输入弧度范围建议在 0.01~1.56
- 计算 arctan 数值范围建议在 0.05~10000
- 计算 tanh,一个周期出结果
- 输出结果支持查询和中断方式

6.21.3 功能描述

使用 CORDIC 计算 COS/SIN/ARCTAN 流程如下:

- 配置中断使能寄存器 IE
- 配置参数寄存器 INPUT
- 配置控制寄存器 CMD
- 结果查询

如果采用查询方式,根据需要,反复查询 COS、SIN 或者 ARCTAN,当相应输出寄存器 DONE 位为 1 时,得到有效的返回值;

如果采用中断方式,当中断来临,查询到 IF 寄存器 DONE 位状态为 1 时,根据需要,读 COS、SIN 或者 ARCTAN 寄存器即可。

注意: 计算得到的结果会一直保持,直到下一次启动 CMD. START。START 启动后,就可以开始配置下一次计算所需要的 INPUT 和 CMD,但 START 只有等到这次计算结束后才能再次启动。

中断配置与清除

可通过配置中断使能寄存器 IE 中相应位使能中断。当中断触发后,中断标志寄存器 IF 中对应位置 1。如需清除此标志,需在对应标志位中写 1 清零(R/W1C),否则中断在开启状态下会一直进入。

6.21.4 寄存器映射

名称	偏移	类型	复位值	描述
CORDIC	BASE: ()x40003000	•	
CMD	0x00	R/W	0	控制寄存器
INPUT	0x04	R/W	0	待计算参数寄存器
cos	0x08	R/W	0	COS 计算结果输出寄存器
SIN	0x0C	R/W	0	SIN 计算结果输出寄存器
ARCTAN	0x10	R/W	0	ARCTAN 计算结果输出寄存器
IF	0x14	R/W1C	0	中断状态寄存器
IE	0x18	R/W	0	中断使能寄存器
TANH	0x1C	R/W	0	TANH 计算寄存器

6.21.5 寄存器描述

控制寄存器 CMD

寄存器	M 🚍 📆 🖫	类型	复位值	描述
CMD	0x00		0	控制寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
	-						
7	6	5	4	3	2	1	0
- M		MULMODE	CALMUL	CALSIN	RAN	NGE	START

位域	名称	描述
31:6	-	_
5	MULMODE	1: 当前为计算乘除法模式
		0:当前为计算 SIN COS ARCTAN 模式
4	CALMUL	1: 当前为计算乘法
4		0: 当前为计算除法
2	CALSIN	1: 计算 sin 和 cos
		0: 计算 arctan
		控制计算 arctan 时,待计算的值 x 的范围
2:1	RANGE	00:在 0.05 <x<=0.5 td="" 之间<=""></x<=0.5>
2.1		01:0.5 <x<=2 td="" 之间时<=""></x<=2>
		1x: 大于 x>2
		1:启动 CORDIC 计算
0	START	0:停止启动 CORDIC 计算
		注:计算完成后自动清零,计算过程中不可写

待计算参数寄存器 INPUT

寄存器	偏移	类型	复位值	描述
INPUT	0x04		0	待计算参数寄存器

31	30	29	28	27	26	25	24	
INPL	INPUT_I2			INPUT_F2				
23	22	21	20	19	18	17	16	
			INPU	T_F2				
15	14	13	12	11	10	9	8	
INP	UT_I			INPL	JT_F			
7	6	5	4	3	2	1	0	
	INPUT_F							

位域	名称	描述				
		当计算乘法或除法时,所需要的参数整数部分				
21.20	INDUIT 12	为了保证收敛且计算过程不溢出,计算乘除时这个参数的范围为 1<= INPUT1 <2				
31:30	INPUT_I2	在计算乘法时,计算结果保存在 SIN 寄存器中				
		在计算除法时,计算结果保存在 ARCTAN 寄存器中				
29:16	INPUT_F2	当计算乘法或除法时,所需要的参数小数部分				
		CORDIC 计算所需参数的整数部分				
		在计算 sin 和 cos 时,表示待计算的角度(弧度单位)。				
15:14	INDUT	在计算 arctan 时,为了防止内部计算溢出,需要根据待计算的值进行一些初步处				
15:14	INPUT_I	理。如果待计算的为 x,当 0.05 <x<=0.5 0.5<x<="2" 2x;当="" input="" td="" 为="" 时,设<="" 时,设置=""></x<=0.5>				
		置 INPUT 为 x;当 x>2 时,设置 INPUT 为 2/x				
		在计算乘除时,需要保证范围 1<= INPUT<2				
13:0	INPUT_F	CORDIC 计算所需参数的小数部分				

cos 计算结果输出寄存器 cos

寄存器	偏移	类型	复位值	描述
cos	0x08		0	COS 计算结果输出寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
			-				DONE
15	14	13	12	11	10	9	8
	I			ı	F		
7	6	5	4	3	2	1	0
	F						

位域	名称	描述
31:17	-	-
16		1: 当前计算已经结束
16	DONE	0: 计算还没有结束
15:14	I	COS 计算结果整数部分
13:0	F	COS 计算结果小数部分

SIN 计算结果输出寄存器 SIN

寄存器	偏移	类型	复位值	描述
SIN	0x0C		0	SIN 计算结果输出寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
			-				DONE
15	14	13	12	11	10	9	8
	I		F				
7	6	5	4	3	2	1	0
			-	F			

位域	名称	描述
31:17	-	-
16		1: 当前计算已经结束
16	DONE	0: 计算还没有结束
15:14	I	SIN 计算得到的整数部分
13:0	F	SIN 计算得到的小数部分

ARCTAN 计算结果输出寄存器 ARCTAN

寄存器	偏移	类型	复位值	描述
ARCTAN	0x10		0	ARCTAN 计算结果输出寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
			-				DONE
15	14	13	12	11	10	9	8
	I		F				
7	6	5	4	3	2	1	0
			-	F			

位域	名称	描述
31:17	-	_
16	16 DONE	1 表示当前计算已经结束
16		0 表示计算还没有结束
15:14	I	ARCTAN 计算得到的整数部分
13:0	F ARCTAN 计算得到的小数部分	

中断状态寄存器 IF

寄存器	偏移	类型	复位值	描述
IF	0x14	R/W1C	0	中断状态寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
			-			ERR	DONE

位域	名称	描述
31:2	-	-
	ERR 中断状态,计算得到的 cos 或 sin 值不在 0~1 范围内,或者 arctan 的值不在	
	ERR	0~2 范围内。写 1 清零
		1: 中断已发生
		0: 中断未发生
		CAL 中断状态,写 1 清零
0	DONE	1: 当前计算已经结束
		0: 当前计算未结束

中断使能寄存器 IE

寄存器	偏移	类型	复位值	描述
IE	0x18	R/W	0	中断使能寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
			-			ERR	DONE

位域	名称	描述
31:2	-	-
		ERR 中断使能
1	ERR	1: 使能
		0: 禁能
		CAL 中断使能
0	DONE	1: 使能
		0: 禁能

TANH 计算寄存器 TANH

寄存器	偏移	类型	复位值	描述
TANH	0x1C		0	TANH 计算寄存器

31	30	29	28	27	26	25	24		
				-					
23	22	21	20	19	18	17	16		
				-					
15	14	13	12	11	10	9	8		
	I			ı	F				
7	6	5	4	3	2	1	0		
	F								

位域	名称	描述
31:16	-	_
15:14		TANH 输入和计算结果的整数部分
13:0	F	TANH 输入和计算结果的小数部分

6.22 除法器 (DIV)

6.22.1 概述

SWM211 系列所有型号都包括该模块且操作均相同。使用前需使能除法器模块时钟。

6.22.2 特性

- 支持 32 位整数除法运算及求余运算
- 支持 32 位开方运算,支持小数位
- 除法单次运算耗时 32 个时钟,不包括读写寄存器时间
- 开方单次运算耗时 16/32 个时钟,不包括读写寄存器时间
- 开方可选择两种模式
 - 只取整数(16位)
 - 包含小数(16+16 位)
- 运算启动自动清除运算使能查询
- 提供运算进行标志和完成标志
- 支持有符号数和无符号数运算

6.22.3 功能描述

使用除法器模块计算商/余数流程如下:

- 配置 DIVIDEND 寄存器和 DIVISOR 寄存器
- 配置 CR 寄存器。选择有符号数或无符号数, DIVGO 启动运算
- 读取 SR 寄存器, 查看运算进程
 - DIVBUSY: 运算标志
 - DIVEND:运算完成标志
- 读取 QUO 寄存器及余数寄存器 REMAIN

注 1: 当除数为 0 时, 商数为全 1, 余数为被除数; 当被除数为 0, 商数为全 0, 余数为 0

- 注 2: 计算过程中,不可更改除数及被除数
- 注 3: 如果除数为 0, 商数为全'1', 余数为被除数
- 注 4: 如果被除数为 0, 商数为全'0', 余数为 0

使用除法器模块计算开方流程如下:

- 配置 RADICAND 寄存器;
- 配置 CR 寄存器; ROOTMOD: 运算模式; ROOTGO: 启动运算;
- 读取 SR 寄存器; ROOTBUSY: 开方运算标志; ROOTENDI: 开方整数运算完成标志; ROOTENDF: 开方小数运算完成标志;
- 读取 ROOT 寄存器;
- 注 1: 当选择只计算整数时, ROOT 寄存器低 16 位仍保存最后一次的小数计算结果。
- 注 2: 计算过程中,不可更改被开方数。

6.22.4 寄存器映射

名称	偏移	类型	复位值	描述		
DIV BASE: 0x40003800						
CR	0x00	R/W	0	控制寄存器		
SR	0x04	R/W	0	状态寄存器		
IE	0x08	R/W	0	中断使能寄存器		
DIVIDEND	0x10	R/W	0	被除数寄存器		
DIVISOR	0x14	R/W	0	除数寄存器		
QUO	0x18	R/W	0	商寄存器		
REMAIN	0x1C	R/W	0	余数寄存器		
RADICAND	0x20	R/W	0	开方数据寄存器		
ROOT	0x24	R/W	0	平方根数据寄存器		

6.22.5 寄存器描述

控制寄存器 CR

寄存器	4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	类型	复位值	描述
CR	0x00		0	控制寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
			-			ROOTMOD	ROOTGO
7	6	5	4	3	2	1	0
		-	-			DIVSIGN	DIVGO

位域	名称	描述		
31:10	-	-		
		开方运算模式		
9	ROOTMOD	0: 开方运算结果只保留 16 位整数;		
		1: 开方运算结果保留 16 位整数+16 位小数;		
		开方运算启动信号		
8	ROOTGO	1: 启动		
P	ROOTGO	0: 停止		
		运算完成后硬件会自动清零。		
7:2	-	-		
		0: 表示有符号数		
	DIVSIGN	1:表示无符号数		
	DIVSIGN	注:当为有符号数时,数据的最高位(31bit)表示符号,有效数据为 31 位		
		当为无符号数时,32bit 数据都是有效数据		
	DIVGO	除法运算启动信号		
		1: 启动		
		0: 停止		
		运算完成后硬件会自动清零。		

状态寄存器 SR

寄存器	偏移	类型	复位值	描述
SR	0x04	R/W	0	状态寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
		-			ROOTBUSY	ROOTENDF	ROOTENDI
7	6	5	4	3	2	1	0

位域	名称	描述	
31:11	-	-	
		开方运算过程标志。	
		1: 运算中	
10	ROOTBUSY	0: 运算完成	
		RO	
		运算完成后硬件自动清零。	
		开方小数运算完成标志。	
9	ROOTENDF	1: 运算完成	
9	ROOTENDI	0: 运算未完成	
		写1清除。	
		开方整数运算完成标志。	
8	ROOTENDI	1: 运算完成	
	ROOTENDI	0: 运算未完成	
		写1清除。	
7:2	-	-	
		除法运算过程标志。	
		1: 运算中	
1	DIVBUSY	0: 运算完成	
		RO	
		运算完成后硬件自动清零	
		除法运算完成标志。	
0	DIVEND	1: 运算完成	
	DIVERD	0: 运算未完成	
		写1清除。	

中断使能寄存器 IE

寄存器	偏移	类型	复位值	描述
IE	0x08	R/W	0	中断使能寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
			-				DONE

位域	名称	描述
31:1	_	-
		运算完成中断使能位
О	DONE	1: 使能
		0: 不使能

被除数寄存器 DIVIDEND

寄存器	偏移	类型	复位值	描述
DIVIDEND	0x10	R/W	0	被除数寄存器

31	30	29	28	27	26	25	24	
	DIVIDEND							
23	22	21	20	19	18	17	16	
	DIVIDEND							
15	14	13	12	11	10	9	8	
	DIVIDEND							
7	6	5	4	3	2	1	0	
	DIVIDEND							

位域	名称	描述
31:0	DIVIDEND	被除数

除数寄存器 DIVISOR

寄存器	偏移	类型	复位值	描述
DIVISOR	0x14	R/W	0	除数寄存器

31	30	29	28	27	26	25	24	
	DIVISOR							
23	22	21	20	19	18	17	16	
	DIVISOR							
15	14	13	12	11	10	9	8	
			DIVI	SOR				
7	6	5	4	3	2	1	0	
	DIVISOR							

位域	名称	描述
31:0	DIVISOR	除数

商寄存器 QUO

寄存器	偏移	类型	复位值	描述
QUO	0x18		0	商寄存器

31	30	29	28	27	26	25	24	
	QUO							
23	22	21	20	19	18	17	16	
	QUO							
15	14	13	12	11	10	9	8	
	QUO							
7	6	5	4	3	2	1	0	
	QUO							

ſ	立域	名称	描述
3	1:0	QUO	商数

余数寄存器 REMAIN

寄存器	偏移	类型	复位值	描述
REMAIN	0x1C	R/W	0	余数寄存器

31	30	29	28	27	26	25	24			
	REMAIN									
23	22	21	20	19	18	17	16			
	REMAIN									
15	14	13	12	11	10	9	8			
			REM	1AIN						
7 6 5 4 3 2 1 0										
	REMAIN									

位域	名称	描述
31:0	REMAIN	余数

平方数据寄存器 RADICAND

寄存器	偏移	类型	复位值	描述
RADICAND	0x20	R/W	0	平方数据寄存器

31	30	29	28	27	26	25	24		
RADICAND									
23	22	21	20	19	18	17	16		
	RADICAND								
15	14	13	12	11	10	9	8		
	RADICAND								
7 6 5 4 3 2 1 0									
	RADICAND								

位域	名称	描述
31:0	RADICAND	平方数据

平方根寄存器 ROOT

寄存器	偏移	类型	复位值	描述
ROOT	0x24	R/W	0	平方根数据寄存器

31	30	29	28	27	26	25	24		
ROOTI									
23	22	21	20	19	18	17	16		
	ROOTI								
15	14	13	12	11	10	9	8		
			RO	OTF					
7 6 5 4 3 2 1 0									
	ROOTF								

位域	名称	描述
31:16	ROOTI	平方根整数数据
15:0	ROOTF	平方根小数数据

6.23 局域网控制器(CAN)

6.23.1概述

本系列所有型号 CAN 模块操作均相同,不同型号 CAN 数量可能不同。使用前需使能 CAN 模块时钟。与物理层相连需要连接额外的硬件收发器。

6.23.2特性

- 支持协议 2.0A(11 位标识符)和 2.0B(29 位标识符)
- 支持最大 1 Mbit/s 的比特率
- 提供 64 字节的接收 FIFO
- 提供 32 个 16 位或 16 个 32 位的滤波器
- 提供可掩蔽中断
- 为自检操作提供可编程环回模式

6.23.3 功能描述

中断配置与清除

CAN 模块支持如下中断:

- 接收中断
- 发送中断
- 错误中断
- 数据溢出中断
- 唤醒中断
- 被动错误中断
- 仲裁丢失中断
- 总线错误中断

触发中断前,首先需要设置相应位的中断使能(IE)。

各中断状态清除(除接收中断),均为读清除。对于接收中断,需要将 CMD 寄存器 RRB 位写 1 清除。

数据发送

发送报文需要设置发送 buffer (寄存器 INFO, DATA0—DATA11)。可以是标准帧格式或是扩展帧格式。数据位最大是 8 个字节,超过 8 字节,自动按 8 字节计算。

写数据前,需要查看 SR 寄存器 TXRDY 位是否等于 1,如果不等于 1,则发送的数据将会被丢弃。 发送数据请求通过设置 CMD 寄存器 TXREQ 位为 1(发送请求)或是 CMD. SRR=1(自接收请求)。当 设置发送请求后,状态寄存器 SR.TXBUSY = 1,发送请求位清除。

数据传输没有开始时,可以通过设置命令寄存器(CMD. ABTTX = 1)中止传输。如果已经开始传输,则不能中止。

数据接收

数据接收先通过滤波器,符合条件标识符的才可以接收。滤波器的设置详见"接收滤波"章节。

数据接收可以读取内部 64 字节 FIFO。

读取内部的接收 FIFO, 开始接收数据时, 状态寄存器 SR.RXBUSY = 1, 当接收 FIFO (寄存器 INFO, DATA0—DATA11)接收到完整报文的时候, 状态寄存器 (SR. RXDA = 1), 中断状态 IF. RXDA = 1(如果中断使能寄存器 IE. RXDA = 1)。接收 FIFO 是 64 字节,最多允许接收 5 个完整的扩展帧报文。如果接收 FIFO 没有足够的内存,状态寄存器 SR. RXOV = 1,数据溢出,(如果中断使能 IE. RXOV = 1),溢出中断置位 IF.RXOV = 1。

从接收 FIFO 中读取数据后,需要释放 FIFO(设置 CMD. RRB=1)。如果没有读取的数据,中断状态位(IE. RXDA)和接收 BUFFER(SR. RXDA)状态位清除。

自接收

自接收功能,数据可以自发自收,不发送应答位。通过设置自接收请求(CMD. SRR = 1),根据配置,可以产生发送和接收中断。

如果自接收请求和发送请求同时设置,则自接收请求设置无效

接收滤波

验收滤波器有验收代码寄存器(ACRO-ACR3)和验收屏蔽寄存器(AMRO-AMR1)

标准帧格式,单过滤模式

接收 buffer

地址 0x44	0x48			0x4c	0x50
ID28ID21	ID20ID18	RTR	XXXX(不匹配)	数据字节1	数据字节 2

过滤器

ACR0[7:0]	ACR1[7:4]	(ACR1[3:0]不使用)	ACR2[7: 0]	ACR3[7: 0]
AMR0[7:0]	AMR1[7:4]	(AMR1[3:0]不使用)	AMR2[7: 0]	AMR3[7: 0]

注:如果不需要数据匹配,AMR2、AMR3 设置 OxFF

标准帧格式, 双过滤模式

接收 buffer

地址 0x44	0x48			0x4C	0x50	
ID28ID21	ID20ID18	RTR	XX(不匹配)	数据字节 1[7:4]	数据字节 1[3:0]	数据字节 2

过滤器 1:

ACR0[7:0]	ACR1[7:4]
AMR0[7:0]	AMR1[7:4]

ACR1[3:0]	ACR3[3:0]
AMR1[3:0]	AMR3[3:0]

过滤器 2:

ACR2[7:0]	ACR3[7:4]
AMR2[7:0]	AMR3[7:4]

扩展帧格式,单过滤模式

接收 buffer

地址	: 0x44	0x48	0x4c	0x50		
ID28	ID21	ID20ID13	ID12ID5	ID4ID0	RTR	XX(不匹配)

过滤器:

ACR0[7:0]	ACR1[7:0]	ACR2[7:0]	ACR3[7:2]	ACR3[1:0]不匹配
AMR0[7:0]	AMR0[7:0] AMR1[7:0]		AMR3[7:2]	AMR3[1:0]不匹配

扩展帧格式, 双过滤模式

接收 buffer

地址: 0x4	4 0x48	0x4C	0x50			
ID28ID2:	ID20ID13	ID12~ID5(不匹配)	ID4~ID0(不匹配)	RTR(不匹配)	xx(不匹配)	

过滤器 1:

ACR0[7:0]	ACR1[7:0]
AMR0[7:0]	AMR1[7:0]

过滤器 2:

ACR2[7:0]	ACR3[7:0]
AMR2[7:0]	AMR3[7:0]

波特率

可通过 BTO 和 BT1 寄存器设置波特率,波特率的分频值 (BRP) 低 6bit 存入 BTO 寄存器 BRP 位,高 4bit 存入 BT2 寄存器 BRP 位。

如 BRP=(SystemCoreClock/2)/2/ Baudrate/(1 + (BT1. TSEG1+ 1) + (BT1. TSEG2 + 1)) - 1

值得注意的是需要确保 BRP 的值为整数,即(SystemCoreClock/2)/2/ Baudrate 为整数,即(1+(BT1. TSEG1+ 1) + (BT1. TSEG2 + 1))能被((SystemCoreClock/2)/2/ Baudrate)整除。

采样点 = (BT1. TSEG1 + 1)/((1 + (BT1. TSEG1 + 1) + (BT1. TSEG2 + 1))*100%

如图 6-103 波特率设置示意图所示。

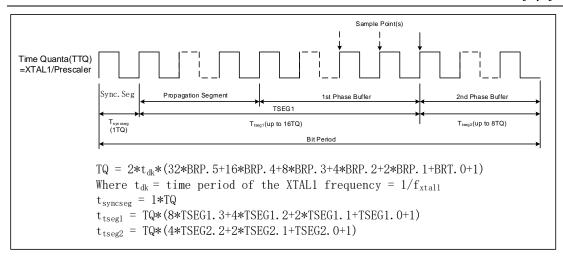


图 6-103 波特率设置示意图

错误处理

CAN 模块包括两个错误计数器:接收错误计数器 RXERR 和发送错误计数器 TXERR。当发生接收错误或是发送错误时,相应的寄存器会加 1;当成功接收或是成功发送,相应的寄存器会减 1。

位错误、格式错误、填充错误或是其他错误,可以通过错误代码捕捉寄存器 ECC 查询。

错误报警限制寄存器 EWLIM 设置的是发生错误(接收或是发送)的最大次数,默认值是 96。当发送错误计数器或是接收错误计数器超过错误报警限制寄存器设置的值时,错误状态寄存器(SR. ERRWARN = 1)置 1,如果错误中断使能(IE. ERRWARN = 1),产生错误中断(IF. ERRWARN = 1)。

如果任何一个错误计数器超过 127 是,CAN 进入错误主动状态,如果主动错误中断使能(IE. ERRPASS = 1),产生错误主动中断(IF. ERRPASS = 1)。

如果错误计数器超过了 255,总线状态位(SR. BUSOFF)会被置 1,总线关闭,CAN 就会进入复位模式。当清除控制寄存器的复位模式(CR. RST),CAN 退出复位模式。

睡眠模式

CAN 可以工作在低功耗的睡眠模式。通过设置控制寄存器 CR.SLEEP = 1, 进入睡眠模式。

唤醒睡眠模式可以通过以下三种:

- 总线上有活动
- 配置睡眠中断使能,触发睡眠唤醒中断
- 清除睡眠位(CR.SLEEP =0)

如果是总线上有活动唤醒睡眠模式, CAN 直到检测到总线空闲, 并且接收到 11bit 后, 才接受报文。在复位模式下, CAN 不能进入睡眠模式。

仅听模式

配置 CR. LOM = 1, 进入仅听模式。(至少需要三个节点)。

CAN 工作在仅听模式,只接收数据,不发送数据。即使接收成功,也不发送应答位。

初始化和配置

初始化

- 配置中断使能寄存器
- 选择单/双过滤模式和复位模式
- 配置验收寄存器(ACR0—ACR3) 和验收屏蔽寄存器(AMR0—AMR3)
- 配置总线定时寄存器 0(BTR0)和 1(BTR1),设置波特率
- 配置 CR 寄存器,退出复位模式

设置发送数据

- 查看发送 buffer 状态位, SR. TXBR
- 如果可以写入新的报文发送,在发送 buffer 中写入数据 (配置寄存器 INFO, DATA0—DATA11)
- 配置命令寄存器 CMD,设置 CMD. TXREQ,发送数据请求,或 CMD. SRR,自接收请求
- 设置接收数据
- 查看接收中断状态 IF. RXDA (使能接收中断)或是接收 buffer 状态寄存器 SR. RXDA
- 当读取接收 buffer 里的数据后(寄存器 INFO, DATA0—DATA11), 将 CMD. RRB 置 1, 释 放接收 FIFO。

6.23.4 寄存器映射

名称	偏移	类型	复位值	描述
CAN0	BASE: 0x4	00A8000		
CR	0x00	R/W	0x01	控制寄存器
CMD	0x04	wo	0x00	命令寄存器
SR	0x08	RO	0x3C	状态寄存器
IF	0x0C	RC	0x00	中断标志寄存器
IE	0x10	R/W	0x00	中断使能寄存器
ВТ2	0x14	R/W	0x00	总线定时器 2
вто	0x18	R/W	0x00	总线定时器 0
BT1	0x1C	R/W	0x00	总线定时器 1
AFM	0x24	R/W	0x00	过滤方式选择寄存器
AFE	0x28	R/W	0x00	过滤使能寄存器 AFE
ALC	0x2C	RO	0x00	仲裁丢失捕捉
ECC	0x30	RO	0x00	错误代码捕捉
EWLIM	0x34	R/W	0x60	错误报警限制
RXERR	0x38	RO	0x00	接收错误计数
TXERR	0x3C	RO	0x00	发送错误计数
INFO	0x40	RO	0x00	帧格式
DATA0~11	0x44~0x70	wo	0x00	数据 0~11 寄存器
RMCNT	0x74	R/W	0x00	接收数据计数寄存器
TXRINFO	0x280	RO	0x00	读取发送帧格式寄存器
TXRDATA0~11	0x284~0x2B0	RO	0x00	读取发送数据 0~11 寄存器
ACR0~15	0x300~0x33C	R/W	0x00	验收寄存器 0~15
AMR0~15	0x380~0x3BC	RO	0x00	验收屏蔽寄存器 0~15

6.23.5 寄存器描述

控制寄存器 CR

寄存器	4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	类型	复位值	描述
CR	0x00	R/W	0x01	控制寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
	-		SLEEP	-	STM	LOM	RST

位域	名称	描述
31:5	-	-
4	SLEEP	1: 进入睡眠模式,有总线活动或中断时唤醒并自动清零此位0: 正常模式
3	-	-
2	STM	1 : 自测模式,即使没有应答,CAN 控制器也可以成功发送 0 : 正常模式,成功发送数据,需要应答信号
1	LOM	1 : 仅听模式 0 : 正常模式
0	RST	1 : 复位模式 0 : 正常模式 注: 复位模式位接收到'1'-'0'跳变后,CAN 控制器回到工作模式

注: CR.SLEEP 只能在正常模式下写; CR[2:1] 在正常模式和复位模式下都可以写

命令寄存器 CMD

寄存器	偏移	类型	复位值	描述
CMD	0x04	wo	0x00	命令寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
	-		SRR	CLROV	RRB	ABTTX	TXREQ

位域	名称	描述
31: 5	-	-
4	SRR	1: 自测模式下,自接收请求,数据可以同时发送和接收
3	CLROV	1: 清除数据溢出状态位
2	RRB	1: 释放接收缓冲
1	ABTTX	1: 取消下一个发送请求
0	TXREQ	1: 工作模式下,发送数据请求

- 注 1: 同时设置 CMD. ABTTX =1, CMD. TXREQ =1, 在发生总线错误和丢失仲裁的时候, 数据只发送一次
- 注 2: 同时设置 CMD. SRR =1, CMD. TXREQ =1,那么 CMD. SRR =1 无效
- 注 3: 同时设置 CMD ABTTX =1 CMD. SRR =1,在发生总线错误和丢失仲裁的时候,数据只发送一次
- 注 4: 发送请求位(CMD. TXREQ)不能通过设置 CMD. TXREQ = 0 取消发送请求,只能通过设置发送终止命令(CMD. ABTTX = 1)取消
- 注 5: 命令寄存器只写, 读清零。

状态寄存器 SR

寄存器	4馬 本	类型	复位值	描述
SR	0x08	RO	0x3C	状态寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
BUSOFF	ERRWARN	TXBUSY	RXBUSY	ТХОК	TXBR	RXOV	RXDA

位域	名称	描述
31: 8	-	-
7	BUSOFF	1: CAN 控制器处于总线关闭状态,没有参与到总线活动
,	BUSUFF	0:CAN 控制器处于总线开启状态,参与总线活动
_	ERRWARN	1: 至少一个错误计数器达到错误限制寄存器设置的值
6	EKKWAKN	0:错误计数器的值小于错误限制寄存器设置的值
5	TXBUSY	1: 正在发送报文
5	IXBUSY	0: 空闲
4		1: 正在接收报文
4	RXBUSY	0: 空闲
2	TVOV	1: 上一个报文发送成功完成
3	TXOK	0: 上一次的报文没有成功发送
2	TVDD	1: 可以写入新的报文发送
2	TXBR	0: 正在处理前面的发送,现在不能写新的报文
	BYOY	1: 数据溢出。在接收 FIFO 里没有足够的空间导致数据的丢失
1	RXOV	0:上一次写入清除数据溢出命令后,没有数据溢出
•	DVDA	1:接收 buffer 满。接收 buffer 里有一个或多个数据可以读取
U	RXDA	0:接收 buffer 空。没有可读数据

中断状态寄存器 IF

寄存器	偏移	类型	复位值	描述
IF	0x0C	RC	0x00	中断标志寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
BUSERR	ARBLOST	ERRPASS	WKUP	RXOV	ERRWARN	TXBR	RXDA

位域	名称	描述
31: 8	-	-
		CAN 控制器检测到总线错误
7	BUSERR	1: 中断已产生
		0: 中断未产生
		CAN 控制器丢失仲裁变成接收方
6	ARBLOST	1: 中断已产生
		0: 中断未产生
		从被动错误进入主动错误,或是至少一个错误计数器超过 127
5	ERRPASS	1: 中断已产生
		0: 中断未产生
		在睡眠模式下的 CAN 控制器检测到总线活动
4	WKUP	1: 中断已产生
		0: 中断未产生
		数据溢出
3	RXOV	1: 中断已产生
		0: 中断未产生
		错误(SR. ERRWARN 或 SR.BUSOFF 0-to-1 或 1-to-0)
2	ERRWARN	1: 中断已产生
		0: 中断未产生
		可以写入新的报文,发送 buffer 状态位(SR. TXRDY)从 0 变成 1
1	TXBR	1: 中断已产生
		0: 中断未产生
		接收中断,接收 buffer 中有一个或是多个数据信息
0	RXDA	1: 中断已产生
	NADA	0: 中断未产生
		注:清除该位通过写 CMD.RRB = 1 清除。

注:各中断状态清除(除接收中断),均为读清除。对于接收中断,需要将 CMD 寄存器 RRB 位写 1 清除。

中断使能寄存器 IE

寄存器	4馬 本	类型	复位值	描述
IE	0x10	R/W	0x00	中断使能寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
BUSERR	ARBLOST	ERRPASS	WKUP	RXOV	ERRWARN	TXBR	RXDA

位域	名称	描述
31: 8	-	-
		总线错误使能
7	BUSERR	1: 使能
		0: 禁能
		丢失仲裁使能
6	ARBLOST	1: 使能
		0: 禁能
		主动错误使能
5	ERRPASS	1: 使能
		0: 禁能
		睡眠唤醒使能
4	WKUP	1: 使能
		0: 禁能
		接收报文溢出使能
3	RXOV	1: 使能
		0: 禁能
		错误使能
2	ERRWARN	1: 使能
		0: 禁能
		可以写入新的报文使能
1	TXBR	1: 使能
		0: 禁能
		接收中断使能
0	RXDA	1: 使能
		0: 禁能

总线定时器高四位寄存器 BT2

寄存器	偏移	类型	复位值	描述
BT2	0x14	R/W	0x00	总线定时器高四位寄存器 2

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
	-	-			BF	RP	

位域	名称	描述
31:4	-	_
2.0		Baudrate Prescale,波特率预分频值高四位
3:0	BRP	CAN 时间单位=2*Tsysclk*(BT2.BRP<<6+ BT0.BRP +1)

总线定时器 BT0

寄存器	偏移	类型	复位值	描述
вто	0x18	R/W	0x00	总线定时器 0

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
SJW				BF	RP		

位域	名称	描述			
31:8	-	-			
7:6	sJW	可步跳变宽度 可步跳变宽度			
5:0	BRP	Baudrate Prescale,波特率分频低 6 位			
5.0		CAN 时间单位=2*Tsysclk*(BT2.BRP<<6+ BT0.BRP +1)			

总线定时器 BT1

寄存器	偏移	类型	复位值	描述
BT1	0x1C	R/W	0x00	总线定时器 1

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
SAM	TSEG2				TSE	G1	

位域	名称	描述
31:8	-	-
		采样次数
7	SAM	0: 1次
		1: 3次
6:4	TSEG2	t_tseg2 = CAN 时间单位 * (TSEG2+1)
3:0	TSEG1	t_tseg1 = CAN 时间单位 * (TSEG1+1)

过滤方式选择寄存器 AFM

寄存器	偏移	类型	复位值	描述
AFM	0x24	R/W	0x00	过滤方式选择寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
		1			10	,	0
AFM15	AFM14	AFM13	AFM12	AFM11	AFM10	AFM9	AFM8
AFM15 7							

位域	名称	描述
31:16	-	-
		过滤器 15 的滤波方式
15	AFM15	1: 单滤波(32)位,只用于扩展帧
		0: 双滤波(16)位,只用于标准帧
		过滤器 14 的滤波方式
14	AFM14	1: 单滤波(32)位,只用于扩展帧
		0: 双滤波(16)位,只用于标准帧
		过滤器 13 的滤波方式
13	AFM13	1: 单滤波(32)位,只用于扩展帧
		0: 双滤波(16)位,只用于标准帧
		过滤器 12 的滤波方式
12	AFM12	1: 单滤波(32)位,只用于扩展帧
		0: 双滤波(16)位,只用于标准帧
		过滤器 11 的滤波方式
11	AFM11	1: 单滤波(32)位,只用于扩展帧
		0: 双滤波(16)位,只用于标准帧
		过滤器 10 的滤波方式
10	AFM10	1: 单滤波(32)位,只用于扩展帧
		0: 双滤波(16)位,只用于标准帧
		过滤器 9 的滤波方式
9	AFM9	1: 单滤波(32)位,只用于扩展帧
		0: 双滤波(16)位,只用于标准帧
		过滤器 8 的滤波方式
8	AFM8	1: 单滤波(32)位,只用于扩展帧
		0: 双滤波(16)位,只用于标准帧

SWM211 系列

	100 100 100 100 100 100 100 100 100 100		3WIVIZII ポツリ
		过滤器 7 的滤波方式	
7	AFM7	1: 单滤波(32)位,只用于扩展帧	
		0:双滤波(16)位,只用于标准帧	
		过滤器 6 的滤波方式	
6	AFM6	1: 单滤波(32)位,只用于扩展帧	
		0:双滤波(16)位,只用于标准帧	
		过滤器 5 的滤波方式	
5	AFM5	1: 单滤波(32)位,只用于扩展帧	
		0:双滤波(16)位,只用于标准帧	
		过滤器 4 的滤波方式	
4	AFM4	1: 单滤波(32)位,只用于扩展帧	
		0:双滤波(16)位,只用于标准帧	
		过滤器 3 的滤波方式	
3	AFM3	1: 单滤波(32)位,只用于扩展帧	
		0:双滤波(16)位,只用于标准帧	
		过滤器 2 的滤波方式	
2	AFM2	1: 单滤波(32)位,只用于扩展帧	
		0:双滤波(16)位,只用于标准帧	
		过滤器 1 的滤波方式	
1	AFM1	1: 单滤波(32)位,只用于扩展帧	
		0:双滤波(16)位,只用于标准帧	
		过滤器 0 的滤波方式	
О	AFM0	1: 单滤波(32)位,只用于扩展帧	
		0:双滤波(16)位,只用于标准帧	

过滤使能寄存器 AFE

寄存器	偏移	类型	复位值	描述
AFE	0x28	R/W	0x00	过滤使能寄存器 AFE

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
AFE15	AFE14	AFE13	AFE12	AFE11	AFE10	AFE9	AFE8
7	6	5	4	3	2	1	0
AFE7	AFE6	AFE5	AFE4	AFE3	AFE2	AFE1	AFE0

位域	名称	描述
31:16	-	-
		滤波器 15 的使能
15	AFE15	1: 使能滤波器,根据滤波规则进行包收取,默认所有滤波器使能
		0:关闭滤滤器,不收取该滤波器对应的包
		滤波器 14 的使能
14	AFE14	1: 使能滤波器,根据滤波规则进行包收取,默认所有滤波器使能
		0:关闭滤滤器,不收取该滤波器对应的包
		滤波器 13 的使能
13	AFE13	1: 使能滤波器,根据滤波规则进行包收取,默认所有滤波器使能
		0:关闭滤滤器,不收取该滤波器对应的包
		滤波器 12 的使能
12	AFE12	1: 使能滤波器,根据滤波规则进行包收取,默认所有滤波器使能
		0:关闭滤滤器,不收取该滤波器对应的包
		滤波器 11 的使能
11	AFE11	1: 使能滤波器,根据滤波规则进行包收取,默认所有滤波器使能
		0:关闭滤滤器,不收取该滤波器对应的包
		滤波器 10 的使能
10	AFE10	1: 使能滤波器,根据滤波规则进行包收取,默认所有滤波器使能
		0:关闭滤滤器,不收取该滤波器对应的包
		滤波器 9 的使能
9	AFE9	1: 使能滤波器,根据滤波规则进行包收取,默认所有滤波器使能
		0:关闭滤滤器,不收取该滤波器对应的包
		滤波器 8 的使能
8	AFE8	1: 使能滤波器,根据滤波规则进行包收取,默认所有滤波器使能
		0:关闭滤滤器,不收取该滤波器对应的包

SWM211 系列

		344141211 3(7)
		滤波器 7 的使能
7	AFE7	1: 使能滤波器,根据滤波规则进行包收取,默认所有滤波器使能
		0:关闭滤滤器,不收取该滤波器对应的包
		滤波器 6 的使能
6	AFE6	1: 使能滤波器,根据滤波规则进行包收取,默认所有滤波器使能
		0:关闭滤滤器,不收取该滤波器对应的包
		滤波器 5 的使能
5	AFE5	1:使能滤波器,根据滤波规则进行包收取,默认所有滤波器使能
		0:关闭滤滤器,不收取该滤波器对应的包
		滤波器 4 的使能
4	AFE4	1:使能滤波器,根据滤波规则进行包收取,默认所有滤波器使能
		0:关闭滤滤器,不收取该滤波器对应的包
		滤波器 3 的使能
3	AFE3	1. 使能滤波器,根据滤波规则进行包收取,默认所有滤波器使能
		0:关闭滤滤器,不收取该滤波器对应的包
		滤波器 2 的使能
2	AFE2	1:使能滤波器,根据滤波规则进行包收取,默认所有滤波器使能
		0:关闭滤滤器,不收取该滤波器对应的包
		滤波器 1 的使能
1	AFE1	1. 使能滤波器,根据滤波规则进行包收取,默认所有滤波器使能
		0:关闭滤滤器,不收取该滤波器对应的包
		滤波器 0 的使能
0	AFE0	1: 使能滤波器,根据滤波规则进行包收取,默认所有滤波器使能
		0:关闭滤滤器,不收取该滤波器对应的包

仲裁丢失捕捉寄存器 ALC

寄存器	偏移	类型	复位值	描述
ALC	0x2C	RO	0x00	仲裁丢失捕捉

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
	-				ERR_Code		

位域	名称	描述
31:5	-	_
4:0	ERR_Code	详见下表

ALC[4: 0]	十进制值	功能
00000	00	仲裁丢失在识别码的 bit1(ID.28)
00001	01	仲裁丢失在识别码的 bit2(ID.27)
00010	02	仲裁丢失在识别码的 bit3(ID.26)
00011	03	仲裁丢失在识别码的 bit4(ID.25)
00100	04	仲裁丢失在识别码的 bit5(ID.24)
00101	05	仲裁丢失在识别码的 bit6(ID.23)
00110	06	仲裁丢失在识别码的 bit7(ID.22)
00111	07	仲裁丢失在识别码的 bit8(ID.21)
01000	08	仲裁丢失在识别码的 bit9(ID.20)
01001	09	仲裁丢失在识别码的 bit10(ID.19)
01010	10	仲裁丢失在识别码的 bit11(ID.18)
01011	11	仲裁丢失在 SRTR 位
01100	12	仲裁丢失在 IDE 位
01101	13	仲裁丢失在识别码的 bit12(ID.17),只存在扩展帧格式
01110	14	仲裁丢失在识别码的 bit13(ID.16),只存在扩展帧格式
01111	15	仲裁丢失在识别码的 bit14(ID.15) , 只存在扩展帧格式
10000	16	仲裁丢失在识别码的 bit15(ID.14) , 只存在扩展帧格式
10001	17	仲裁丢失在识别码的 bit16(ID.13) , 只存在扩展帧格式
10010	18	仲裁丢失在识别码的 bit17(ID.12) , 只存在扩展帧格式
10011	19	仲裁丢失在识别码的 bit18(ID.11) , 只存在扩展帧格式
10100	20	仲裁丢失在识别码的 bit19(ID.10) , 只存在扩展帧格式
10101	21	仲裁丢失在识别码的 bit20(ID. 9) , 只存在扩展帧格式

SWM211 <u>系列</u>

10110	22	仲裁丢失在识别码的 bit21(ID. 8) , 只存在扩展帧格式
10111	23	仲裁丢失在识别码的 bit22(ID. 7) , 只存在扩展帧格式
11000	24	仲裁丢失在识别码的 bit23(ID. 6) , 只存在扩展帧格式
11001	25	仲裁丢失在识别码的 bit24(ID. 5) , 只存在扩展帧格式
11010	26	仲裁丢失在识别码的 bit25(ID. 4) , 只存在扩展帧格式
11011	27	仲裁丢失在识别码的 bit26(ID. 3) , 只存在扩展帧格式
11100	28	仲裁丢失在识别码的 bit27(ID. 2) , 只存在扩展帧格式
11101	29	仲裁丢失在识别码的 bit28(ID. 1) , 只存在扩展帧格式
11110	30	仲裁丢失在识别码的 bit29(ID. 0) , 只存在扩展帧格式
11111	31	仲裁丢失在 RTR 位,只存在扩展帧格式

错误代码 ECC

寄存器	偏移	类型	复位值	描述
ECC	0x30	RO	0x00	错误代码捕捉

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
ERRCODE		DIR			SEGCODE		

位域	名称	描述			
31:8	-	-			
		错误代码:			
		00: 位错误			
7:6		01: 格式错误			
		10: 填充错误			
		11: 其它错误			
-	DIR	0 发送时发生错误			
5	DIK	1 接收时发生错误			
4:0	SEGCODE	昔误段码,见下表			

ECC[4: 0]	十进制值	功能			
00000	00	_			
00001	01	-			
00010	02	ID28—ID21			
00011	03	帧开始			
00100	04	SRTR 位			
00101	05	IDE 位			
00110	06	ID20—ID18			
00111	07	ID17—ID13			
01000	08	CRC 序列			
01001	09	保留位 0			
01010	10	数据区			
01011	11	数据长度代码			
01100	12	RTR 位			
01101	13	保留位 1			

SWM211 系列

01110	14	ID.4 – ID.0
01111	15	ID.12 – ID.5
10000	16	-
10001	17	积极错误标志
10010	18	-
10011	19	支配(控制)位误差
10100	20	-
10101	21	-
10110	22	消极错误标志
10111	23	错误定义符
11000	24	CRC 定义符
11001	25	应答通道
11010	26	帧结束
11011	27	应答定义符
11100	28	溢出标志

错误报警限制 EWLIM

寄存器	偏移	类型	复位值	描述
EWLIM	0x34	R/W	0x60	错误报警限制

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
	EWLIM						

位域	名称	描述
31:8	_	-
7.0		注意: 在复位模式下可读可写
7:0	EWLIM	在正常模式下只读

接收错误计数器 RXERR

寄存器	偏移	类型	复位值	描述
RXERR	0x38	RO	0x00	接收错误计数

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
	ERRCNT						

位域	名称	描述
31:8	-	_
		当前接收错误计数器的值
7:0	ERRCNT	注意: 在复位模式下可读可写
		在正常模式下只读

发送错误计数器 TXERR

寄存器	偏移	类型	复位值	描述
TXERR	0x3C	RO	0x00	发送错误计数

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
	ERRCNT						

位域	名称	描述		
31:8	-	-		
		发送错误计数器当前值		
7:0	ERRCNT	注意: 在复位模式下可读可写		
		在正常模式下只读		

帧信息寄存器 INFO

寄存器	偏移	类型	复位值	描述
INFO	0x40	RO	0x00	帧格式

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
FF	RTR		-		DI	LC	

位域	名称	描述
31:8	-	-
		帧格式
7	FF	0 标准帧格式
		1 扩展帧格式
		帧格式
6	RTR	0 数据帧
		1 远程帧
5:4	-	-
3:0	DLC	数据长度

<标准帧格式>数据寄存器 0 DATA0

寄存器	偏移	类型	复位值	描述
DATA0	0x44	wo	0x00	数据 0 寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
			I	D			

位域	名称	描述
31:8	-	_
7:0	ID	标识符 ID[28: 21]

<标准帧格式>数据寄存器 1 DATA1

寄存器	偏移	类型	复位值	描述
DATA1	0x48	wo	0x00	数据 1 寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
	ID				-		

位域	名称	描述
31:8	-	_
7:5	ID	标识符 ID[20: 18]
4:0	-	-

<标准帧格式>数据寄存器 2 DATA2

寄存器	偏移	类型	复位值	描述
DATA2	0x4C	wo	0x00	数据 2 寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
	DATA						

位域	名称	描述
31:8	-	-
7:0	DATA	数据字节 0

<标准帧格式>数据寄存器 3 DATA3

寄存器	偏移	类型	复位值	描述
DATA3	0x50	wo	0x00	数据 3 寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
	DATA						

位域	名称	描述
31:8	-	-
7:0	DATA	数据字节1

<标准帧格式>数据寄存器 4 DATA4

寄存器	偏移	类型	复位值	描述
DATA4	0x54	wo	0x00	数据 4 寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
	DATA						

位域	名称	描述
31:8	-	-
7:0	DATA	数据字节 2

<标准帧格式>数据寄存器 5 DATA5

寄存器	偏移	类型	复位值	描述
DATA5	0x58	wo	0x00	数据 5 寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
	DATA						

位域	名称	描述
31:8	-	-
7:0	DATA	数据字节 3

<标准帧格式>数据寄存器 6 DATA6

寄存器	偏移	类型	复位值	描述
DATA6	0x5C	wo	0x00	数据 6 寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
	DATA						

位域	名称	描述
31:8	-	-
7:0	DATA	数据字节 4

<标准帧格式>数据寄存器 7 DATA7

寄存器	偏移	类型	复位值	描述
DATA7	0x60	wo	0x00	数据 7 寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
	DATA						

位域	名称	描述
31:8	-	-
7:0	DATA	数据字节 5

<标准帧格式>数据寄存器 8 DATA8

寄存器	偏移	类型	复位值	描述
DATA8	0x64	wo	0x00	数据 8 寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
	DATA						

位域	名称	描述
31:8	-	_
7:0	DATA	数据字节 6

<标准帧格式>数据寄存器 9 DATA9

寄存器	偏移	类型	复位值	描述
DATA9	0x68	wo	0x00	数据 9 寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
	DATA						

位域	名称	描述
31:8	-	-
7:0	DATA	数据字节 7

<扩展帧格式>数据寄存器 0 DATA0

寄存器	偏移	类型	复位值	描述
DATA0	0x44	wo	0x00	数据 0 寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
	ID						

位域	名称	描述
31:8	-	_
7:0	ID	标识符 ID[28: 21]

<扩展帧格式>数据寄存器 1 DATA1

寄存器	偏移	类型	复位值	描述
DATA1	0x48	wo	0x00	数据 1 寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
	ID						

位域	名称	描述
31:8	-	-
7:0	ID	标识符 ID[20: 13]

<扩展帧格式>数据寄存器 2 DATA2

寄存器	偏移	类型	复位值	描述
DATA2	0x4C	wo	0x00	数据 2 寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
	ID						

位域	名称	描述
31:8	-	-
7:0	ID	标识符 ID[12: 5]

<扩展帧格式>数据寄存器 3 DATA3

寄存器	偏移	类型	复位值	描述
DATA3	0x50	wo	0x00	数据 3 寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
		ID				-	

位域	名称	描述
31:8	-	_
7:3	ID	标识符 ID[4: 0]
2:0	-	-

<扩展帧格式>数据寄存器 4 DATA4

寄存器	偏移	类型	复位值	描述
DATA4	0x54	wo	0x00	数据 4 寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
	DATA						

位域	名称	描述
31:8	-	-
7:0	DATA	数据字节 0

<扩展帧格式>数据寄存器 5 DATA5

寄存器	偏移	类型	复位值	描述
DATA5	0x58	wo	0x00	数据 5 寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
	DATA						

位域	名称	描述
31:8	-	-
7:0	DATA	数据字节1

<扩展帧格式>数据寄存器 6 DATA6

寄存器	偏移	类型	复位值	描述
DATA6	0x5C	wo	0x00	数据 6 寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
	DATA						

位域	名称	描述
31:8	-	_
7:0	DATA	数据字节 2

<扩展帧格式>数据寄存器 7 DATA7

寄存器	偏移	类型	复位值	描述
DATA7	0x60	wo	0x00	数据 7 寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
	DATA						

位域	名称	描述
31:8	-	-
7:0	DATA	数据字节 3

<扩展帧格式>数据寄存器 8 DATA8

寄存器	偏移	类型	复位值	描述
DATA8	0x64	wo	0x00	数据 8 寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
	DATA						

位域	名称	描述
31:8	-	-
7:0	DATA	数据字节 4

<扩展帧格式>数据寄存器 9 DATA9

寄存器	偏移	类型	复位值	描述
DATA9	0x68	wo	0x00	数据 9 寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
	DATA						

位域	名称	描述
31:8	-	-
7:0	DATA	数据字节 5

<扩展帧格式>数据寄存器 10 DATA10

寄存器	偏移	类型	复位值	描述
DATA10	0x6C	wo	0x00	数据 10 寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
	DATA						

位域	名称	描述
31:8	-	-
7:0	DATA	数据字节 6

<扩展帧格式>数据寄存器 11 DATA11

寄存器	偏移	类型	复位值	描述
DATA11	0x70	wo	0x00	数据 11 寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
	DATA						

位域	名称	描述
31:8	-	-
7:0	DATA	数据字节 7

接收报文数目寄存器 RMCNT

寄存器	偏移	类型	复位值	描述
RMCNT	0x74	R/W	0x00	接收数据计数寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
	-				RMC		

位域	名称	描述
31:5	-	-
		每次接收到报文数目加 1,
4:0	RMC	释放接收缓冲数目减 1
		复位模式下,寄存器清零

读取发送帧信息寄存器 TXRDINFO

寄存器	偏移	类型	复位值	描述
TXRINFO	0x280	RO	0x00	读取发送帧格式寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
FF	RTR		-		D	LC	

位域	名称	描述
31:8	-	-
		帧格式
7	FF	0 标准帧格式
		1 扩展帧格式
		帧格式
6	RTR	1 远程帧
		0 数据帧
5:4	_	-
3:0	DLC	数据长度

<标准帧格式>读取发送数据寄存器 0 TXRDATA0

寄存器	偏移	类型	复位值	描述
TXRDATA0	0x284	RO	0x00	读取发送数据 0 寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
	ID						

位域	名称	描述
31:8	-	_
7:0	ID	标识符 ID[28: 21]

<标准帧格式>读取发送数据寄存器 1 TXRDATA 1

寄存器	偏移	类型	复位值	描述
TXRDATA1	0x288	RO	0x00	读取发送数据 1 寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
	ID				-		

位域	名称	描述
31:8	-	-
7:5	ID	标识符 ID[20: 18]
4:0	-	-

<标准帧格式>读取发送数据寄存器 2 TXRDATA 2

寄存器	偏移	类型	复位值	描述
TXRDATA2	0x28C	RO	0x00	读取发送数据 2 寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
	DATA						

位域	名称	描述
31:8	-	-
7:0	DATA	数据字节 0

<标准帧格式>读取发送数据寄存器 3 TXRDATA 3

寄存器	偏移	类型	复位值	描述
TXRDATA3	0x290	RO	0x00	读取发送数据 3 寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
	DATA						

位域	名称	描述
31:8	-	-
7:0	DATA	数据字节1

<标准帧格式>读取发送数据寄存器 4 TXRDATA 4

寄存器	偏移	类型	复位值	描述
TXRDATA4	0x294	RO	0x00	读取发送数据 4 寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
	DATA						

位域	名称	描述
31:8	-	-
7:0	DATA	数据字节 2

<标准帧格式>读取发送数据寄存器 5 TXRDATA 5

寄存器	偏移	类型	复位值	描述
TXRDATA5	0x298	RO	0x00	读取发送数据 5 寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
	DATA						

位域	名称	描述
31:8	-	-
7:0	DATA	数据字节 3

<标准帧格式>读取发送数据寄存器 6 TXRDATA 6

寄存器	偏移	类型	复位值	描述
TXRDATA6	0x29C	RO	0x00	读取发送数据 6 寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
	DATA						

位域	名称	描述
31:8	-	-
7:0	DATA	数据字节 4

<标准帧格式>读取发送数据寄存器 7 TXRDATA 7

寄存器	偏移	类型	复位值	描述
TXRDATA7	0x2A0	RO	0x00	读取发送数据 7 寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
	DATA						

位域	名称	描述
31:8	-	-
7:0	DATA	数据字节 5

<标准帧格式>读取发送数据寄存器 8 TXRDATA 8

寄存器	偏移	类型	复位值	描述
TXRDATA8	0x2A4	RO	0x00	读取发送数据 8 寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
	DATA						

位域	名称	描述
31:8	-	-
7:0	DATA	数据字节 6

<标准帧格式>读取发送数据寄存器 9 TXRDATA 9

寄存器	偏移	类型	复位值	描述
TXRDATA9	0x2A8	RO	0x00	读取发送数据 9 寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
DATA							

位域	名称	描述
31:8	-	_
7:0	DATA	数据字节 7

<扩展帧格式>读取发送数据寄存器 0 TXRDATA0

寄存器	偏移	类型	复位值	描述
TXRDATA0	0x284	RO	0x00	读取发送数据 0 寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
	ID						

位域	名称	描述
31:8	-	-
7:0	ID	标识符 ID[28: 21]

<扩展帧格式>读取发送数据寄存器 1 TXRDATA1

寄存器	偏移	类型	复位值	描述
TXRDATA1	0x288	RO	0x00	读取发送数据 1 寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
	ID						

位域	名称	描述
31:8	-	_
7:0	ID	标识符 ID[20: 13]

<扩展帧格式>读取发送数据寄存器 2 TXRDATA2

寄存器	偏移	类型	复位值	描述
TXRDATA2	0x28C	RO	0x00	读取发送数据 2 寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
	ID						

位域	名称	描述
31:8	-	_
7:0	ID	标识符 ID[12: 5]

<扩展帧格式>读取发送数据寄存器 3 TXRDATA3

寄存器	偏移	类型	复位值	描述
TXRDATA3	0x290	RO	0x00	读取发送数据 3 寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
		ID				-	

位域	名称	描述
31:8	-	-
7:3	ID	标识符 ID[4: 0]
2:0	-	-

<扩展帧格式>读取发送数据寄存器 4 TXRDATA4

寄存器	偏移	类型	复位值	描述
TXRDATA4	0x294	RO	0x00	读取发送数据 4 寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
	DATA						

位域	名称	描述
31:8	-	-
7:0	DATA	数据字节 0

<扩展帧格式>读取发送数据寄存器 5 TXRDATA5

寄存器	偏移	类型	复位值	描述
TXRDATA5	0x298	RO	0x00	读取发送数据 5 寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
	DATA						

位域	名称	描述
31:8	-	-
7:0	DATA	数据字节1

<扩展帧格式>读取发送数据寄存器 6 TXRDATA6

寄存器	偏移	类型	复位值	描述
TXRDATA6	0x29C	RO	0x00	读取发送数据 6 寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
	DATA						

位域	名称	描述
31:8	-	-
7:0	DATA	数据字节 2

<扩展帧格式>读取发送数据寄存器 7 TXRDATA7

寄存器	偏移	类型	复位值	描述
TXRDATA7	0x2A0	RO	0x00	读取发送数据 7 寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
	DATA						

位域	名称	描述
31:8	-	-
7:0	DATA	数据字节 3

<扩展帧格式>读取发送数据寄存器 8 TXRDATA8

寄存器	偏移	类型	复位值	描述
TXRDATA8	0x2A4	RO	0x00	读取发送数据 8 寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
	DATA						

位域	名称	描述
31:8	-	-
7:0	DATA	数据字节 4

<扩展帧格式>读取发送数据寄存器 9 TXRDATA9

寄存器	偏移	类型	复位值	描述
TXRDATA9	0x2A8	RO	0x00	读取发送数据 9 寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
	DATA						

位域	名称	描述
31:8	-	_
7:0	DATA	数据字节 5

<扩展帧格式>读取发送数据寄存器 10 TXRDATA10

寄存器	偏移	类型	复位值	描述
TXRDATA10	0x2AC	RO	0x00	读取发送数据 10 寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
	DATA						

位域	名称	描述
31:8	-	-
7:0	DATA	数据字节 6

<扩展帧格式>读取发送数据寄存器 11 TXRDATA11

寄存器	偏移	类型	复位值	描述
TXRDATA11	0x2B0	RO	0x00	读取发送数据 11 寄存器

31	30	29	28	27	26	25	24	
				-				
23	22	21	20	19	18	17	16	
				-				
15	14	13	12	11	10	9	8	
	-							
7	6	5	4	3	2	1	0	
	DATA							

位域	名称	描述
31:8	-	-
7:0	DATA	数据字节 7

验收寄存器 ACR

型"人可"于1	AA ACN			
寄存器	偏移	类型	复位值	描述
ACR0	0x300	R/W	0x00	验收寄存器 0
寄存器	偏移	类型	复位值	描述
ACR1	0x304	R/W	0x00	验收寄存器 1
寄存器	偏移	类型	复位值	描述
ACR2	0x308	R/W	0x00	验收寄存器 2
寄存器	偏移	类型	复位值	描述
ACR3	0x30C	R/W	0x00	验收寄存器 3
寄存器	偏移	类型	复位值	描述
ACR4	0x310	R/W	0x00	验收寄存器 4
寄存器	偏移	类型	复位值	描述
ACR5	0x314	R/W	0x00	验收寄存器 5
		•	•	·
寄存器	偏移	类型	复位值	描述
ACR6	0x318	R/W	0x00	验收寄存器 6
寄存器	偏移	类型	复位值	描述
ACR7	0x31C	R/W	0x00	验收寄存器 7
寄存器	偏移	类型	复位值	描述
ACR8	0x320	R/W	0x00	验收寄存器 8
寄存器	偏移	类型	复位值	描述
ACR9	0x324	R/W	0x00	验收寄存器 9
寄存器	偏移	类型	复位值	描述
ACR10	0x328	R/W	0x00	验收寄存器 10
寄存器	偏移	类型	复位值	描述
ACR11	0x32C	R/W	0x00	验收寄存器 11
寄存器	偏移	类型	复位值	描述
ACR12	0x330	R/W	0x00	验收寄存器 12
	•	•	•	
寄存器	偏移	类型	复位值	描述

SWM211 系列

ACR13	Ox334	R/W	0x00	验收寄存器 13
-------	-------	-----	------	----------

寄存器	偏移	类型	复位值	描述
ACR14	0x338	R/W	0x00	验收寄存器 14

寄存器	偏移	类型	复位值	描述
ACR15	0x33C	R/W	0x00	验收寄存器 15

31	30	29	28	27	26	25	24		
	ACR								
23	22	21	20	19	18	17	16		
	ACR								
15	14	13	12	11	10	9	8		
			AG	CR					
7	6	5	4	3	2	1	0		
	ACR								

位域	名称	描述		
		当 AFM[n] = 1 时,ACR[n]和 AMR[n]构成一个 32 位过滤器		
31:0	ACR	当 AFM[n] = 0 时,ACR[n]和 AMR[n]构成两个 16 位过滤器		
		注 : ACR & AMR == ID & AMR 的 Message 通过过滤		

验收屏蔽寄存器 AMR

型"以开版可"	IJ AA AIVII	•		
寄存器	偏移	类型	复位值	描述
AMR0	0x380	RO	0x00	验收屏蔽寄存器 0
寄存器	偏移	类型	复位值	描述
AMR1	0x384	RO	0x00	验收屏蔽寄存器 1
寄存器	偏移	类型	复位值	描述
AMR2	0x388	RO	0x00	验收屏蔽寄存器 2
寄存器	偏移	类型	复位值	描述
AMR3	0x38C	RO	0x00	验收屏蔽寄存器 3
寄存器	偏移	类型	复位值	描述
AMR4	0x390	RO	0x00	验收屏蔽寄存器 4
寄存器	偏移	类型	复位值	描述
AMR5	0x394	RO	0x00	验收屏蔽寄存器 5
寄存器	偏移	类型	复位值	描述
AMR6	0x398	RO	0x00	验收屏蔽寄存器 6
寄存器	偏移	类型	复位值	描述
AMR7	0x39C	RO	0x00	验收屏蔽寄存器 7
,				
寄存器	偏移	类型	复位值	描述
AMR8	0x3A0	RO	0x00	验收屏蔽寄存器 8
寄存器	偏移	类型	复位值	描述
AMR9	0x3A4	RO	0x00	验收屏蔽寄存器 9
寄存器	偏移	类型	复位值	描述
AMR10	0x3A8	RO	0x00	验收屏蔽寄存器 10
寄存器	偏移	类型	复位值	描述
AMR11	0x3AC	RO	0x00	验收屏蔽寄存器 11
寄存器	偏移	类型	复位值	描述
AMR12	0x3B0	RO	0x00	验收屏蔽寄存器 12
寄存器	偏移	类型	复位值	描述

SWM211 系列

AMR13 0x3E	BB4 RO	0x00	验收屏蔽寄存器 13
-------------------	--------	------	------------

寄存器	偏移	类型	复位值	描述
AMR14	0x3B8	RO	0x00	验收屏蔽寄存器 14

寄存器	偏移	类型	复位值	描述
AMR15	0x3BC	RO	0x00	验收屏蔽寄存器 15

31	30	29	28	27	26	25	24	
AMR								
23	22	21	20	19	18	17	16	
	AMR							
15	14	13	12	11	10	9	8	
	AMR							
7	6	5	4	3	2	1	0	
	AMR							

位域	名称	描述		
		当 AFM[n] = 1 时,ACR[n]和 AMR[n]构成一个 32 位过滤器		
31:0	AMR	当 AFM[n] = 0 时,ACR[n]和 AMR[n]构成两个 16 位过滤器		
		注 : ACR & AMR == ID & AMR 的 Message 通过过滤		

6.24 MPU 接口 (MPU)

6.24.1 概述

本系列所有型号 MPU 模块操作均相同。使用前需使能 MPU 模块时钟。

6.24.2 特性

- 16 位 MPU 数据接口位宽
- 支持 MPU 接口
 - 接口时序可调
 - 输出时钟可配置为空闲时关闭
 - 通过 MCU 或者 DMA 工作

6.24.3 模块结构框图

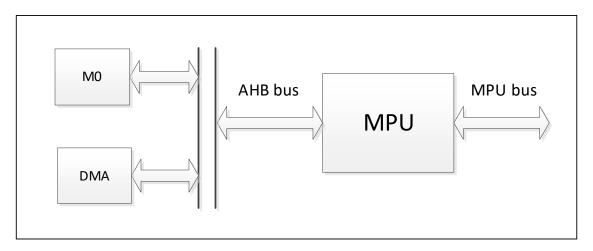


图 6-104 MPU 模块结构框图

6.24.4 功能描述

数据接口

MPU 模块包括 RD、WR、RS、CS、DATA 等控制接口。使用时将相关 GPIO 功能设置为 MPU 模块接口信号。

如表格 6-4 所示:

表格 6-4 MPU 模块数据接口

信号名称	信号方向	功能
RD	0	MPU:I80 接口下 RD 信号
WR	0	MPU:I80 接口下 WR 信号,M68 接口下 E 信号
RS	О	MPU:I80、M68 接口下 RS 信号
cs	0	MPU:I80 接口下 CS 信号,M68 接口下 CS、RW 信号
DATA	I/O	MPU 接口数据输出

接口时序

MPU 接口时序如图 6-105 所示:

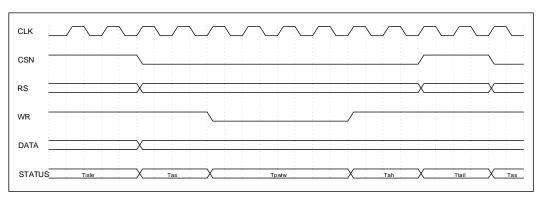


图 6-105 MPU 接口时序图

Tas 周期从 CS 下降沿到 WR 下降沿, 为地址建立时间;

Tpwlw 周期从 WR 下降沿到上升沿,为 WR 操作脉冲宽度;

Tah 周期从 WR 上升沿到 CS 上升沿, 为地址保持时间;

Ttail 周期从 CS 上升沿到 CS 下降沿, 为与下次选通之间的时差。

操作说明

- 配置 CR 寄存器,设置参数
- CPU 写 IR 寄存器,配置待访问寄存器地址
- CPU写 DR 寄存器,写入数据,或者 CPU 读 DR 寄存器,接收数据
- 查询 BUSY 状态位为 0,表示一个数据传输结束

如果使用 DMA 操作,需要先使能 SR 寄存器中的 DMAEN 位,然后根据写入或读出,将 DR 寄存器地址配置为 DMA 模块的目标地址或源地址,再启动 DMA 模块的操作

6.24.5 寄存器映射

名称	偏移	类型	复位值	描述		
MPU BASE: 0x40001800						
SR	0x8	RW	0	启动传输寄存器		
CR	0x0C	RW	0	参数控制寄存器		
IR	0x10	R/W	0	指令寄存器寄存器		
DR	0x14	R/W	0	数据寄存器		

6.24.6 寄存器描述

启动传输寄存器 SR

寄存器	M 🚍 📆 🖫	类型	复位值	描述
SR	0x8		0	启动传输寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
		-	-			DMAEN	BUSY

位域	名称	描述
31:2	-	_
	DMAEN	使能 DMA 读写。当使能芯片内部 DMA 通道进行数据搬移时,需要先配
1		置 DMAEN 为 1。
		传输状态指示,RO
		为 1 表示正在传输出,为 0 表示空闲。当使用 CPU 进行数据搬移时,需
l l	BUSY	要先查询该 bit 是否为 0(空闲);当使用 DMA 进行数据搬移时,可忽略
		此 bit。

参数控制寄存器 CR

寄存器	偏移	类型	复位值	描述
CR	0x0C		0	参数控制寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
	-	CSO\	WR0	RO WRH		HOLD	
15	14	13	12	11	10	9	8
WR	ICS1		WCS	51_0		RDH	OLD
7	1CS1 6	5	WCS	3 3	2	1 RDH	OLD 0

位域	名称	描述
31:22	-	-
21:20	CSOWR0	控制从 CSn 下降沿到 WRn 下降沿的时间。
21:20	CSOWRO	0 表示 1 个时钟周期。时序要求中 Tas 和 Tcsbs 由这个寄存器保证
10.16	WRHOLD	控制 WRn 低电平的持续时间。
19:16	WKHOLD	0 表示 1 个时钟周期。
15:14	M/D4 CC4	控制 WRn 上升沿到 CSn 上升沿的时间。
15.14	WR1CS1	0 表示 1 个时钟周期。
13:10	WCS1 0	写操作时,控制从 CSn 上升沿到 CSn 下除沿的时间。
13:10	WCS1_0	0 表示 1 个时钟周期。
0.5	RDHOLD	控制 RD 低电平的持续时间。
9:5	RDHOLD	0 表示 1 个时钟周期
4.0	DC\$1_0	在读数据操作时,控制从 CSn 上升沿到下降沿的时间。
4:0	RCS1_0	0 表示 1 个时钟周期。

指令寄存器 IR

寄存器	偏移	类型	复位值	描述
IR	0x10	R/W	0	指令寄存器寄存器

31	30	29	28	27	26	25	24			
	IR									
23	22	21	20	19	18	17	16			
	IR									
15	14	13	12	11	10	9	8			
			ı	R						
7	6	5	4	3	2	1	0			
	IR									

位域	名称	描述
31:0	IR	指令

数据寄存器 DR

寄存器	M = 184.	类型	复位值	描述
DR	0x14	R/W	0	数据寄存器

31	30	29	28	27	26	25	24			
	DR									
23	22	21	20	19	18	17	16			
	DR									
15	14	13	12	11	10	9	8			
	DR									
7	6	5	4	3	2	1	0			
	DR									

位域	名称	描述
31:0	DR	数据

6.25 FLASH 控制器与 ISP 操作

6.25.1 概述

SWM211 系列内置 FLASH。可以通过调用 IAP 函数或寄存器读写的方式进行 FLASH 操作。 操作 FLASH 前,需要关闭中断,防止打断造成写入错误。

6.25.2 特性

- 支持 ISP 程序定制
- 支持 FLASH 编程
- 支持 BOOT 自定义
- 支持加密

6.25.3 功能描述

FLASH 操作

FLASH 操作可以通过寄存器进行操作,也可以通过 IAP 函数进行擦除及写入。

寄存器操作

- ERASE 操作:
 - 使能 FLASH 擦写使能位
 - 配置擦 page 的地址
 - 查询 ERASE 位等待擦完成,直至状态从 1 变为 0,擦除完成。当 Flash 完成擦除操作后,方可进行其他操作
- PROGRAM 操作:
 - 使能 FLASH 擦写使能位
 - 配置 FLASH 写地址,必须字对齐
 - 配置 FLASH 要写的数据
 - 查询 PROEND 位等待写完成

注1: 以上操作流程均可在FLASH 或 SRAM 中执行

注 2:每 PAGE 为 1K / 512 字节,每次最少写 1 word

IAP 操作

IAP 函数作为片内驻留程序, 其提供了针对 flash 的相关操作 IAP 函数为 Thumb 代码, 分为擦除函数(驻留地址为 0x1000400)和写入函数(驻留地址为 0x1000450), 建议使用如下方式调用:

擦除函数:

定义函数类型:

typedef uint32_t (*IAPFunc1)(uint32_t PageNum);

IAPFunc1 FLASH_PageErase = (IAPFunc1)0x1000401;

变量定义如下:

PageNum: flash 擦除目标页码,以 page 为单位,0 为首地址,N 为 page*N 对应地址

返回值:

- 0:擦除成功
- 1:擦除失败,参数错误

调用:

Result = FLASH PageErase(10);

擦除第 10*page 的内容。Result 返回 0 表示成功。

写入函数:

定义函数类型:

typedef void (*IAPFunc2)(uint32_t faddr, uint32_t raddr, uint32_t cnt);

IAPFunc2 FLASH_PageWrite = (IAPFunc2)0x1000451;

变量定义如下:

faddr: flash 写入目标地址,字对齐

raddr: ram 写入目标地址,字对齐

cnt: 写入数量,字为单位,长度不超过 1page

返回值:

0: 写入成功

1: 写入失败,参数错误

调用:

Result = FLASH_PageWrite(0x400,0x20000400,8);

将 ram 地址 0x20000400 开始的 8*4 个字节写入 flash 地址 0x400 起始。Result 返回 0 表示成功。

调用 IAP 函数时,应保证栈空间剩余 24 个字节(byte)以上。执行写操作前,需确认对应目标地址已经执行过擦除操作。

详细操作请参阅库函数。

ISP 模式

ISP(在系统编程)操作说明: 当芯片上电后检测到 ISP 引脚持续 5ms 以上的高电平后,将会进入 ISP(在应用编程)模式。配合上位机及串口可执行程序更新操作,具体引脚请参考管脚定义章节。

注: ISP 方式的串口烧录时,默认使用 M1 (RX)/M0 (TX)作为串口通讯使用

详细操作请参阅应用文档及库函数。

BOOT 自定义

FLASH 地址空间支持将指定地址的 2K 数据映射至 0x00 空间,通过 REMAP 寄存器实现。将地址(2KB 对齐)写入 REMAP 寄存器 BASEADD,并将 EN 位置 1,则指定地址内容将被映射至 0x00空间,可通过此功能实现向量表的重映射。

例如

BOOT: 0x00 ~ 0x4000

USER: 0x4000 ~ 0x8000

在 BOOT 中配置 REMAP 寄存器地址为 0x4000 并使能,并跳转至 USER 执行,当读取 0x00 地址时,返回内容为 0x4000 地址内容。

加密方式

加密支持三种级别

级别	说明	关键字值
级别 1	不加密,SWD 可正常读写	0x00
级别 2	SWD 读取加密,SWD 无法读取 FLASH,只能执行擦除操作,连接 SWD 后,FLASH 无法执行读操作,读取 FLASH 会进入 Hardfault	0x43211234
级别 3	SWD 封锁,SWD 无法执行读取及擦除工作,只能通过 ISP 读取	0xABCD1234

通过在用户程序中将 0x1C 偏移地址初始化为指定关键字,即可实现指定级别的加密。程序下载后再次上电后,芯片将处于指定加密级别的状态。

6.25.4 寄存器映射

名称	偏移	类型	复位值	描述
FLASHCTL	BASE: 0x4	004A000		
DATA	0x00	R/W	0x0000_0000	写数据寄存器
ADDR	0x04	R/W	0x0000_0000	写地址寄存器
ERASE	0x08	R/W	0x0000_0000	擦除寄存器
CACHE	охос	R/W	0x0000_0000	CACHE 寄存器
CFG0	0x10	R/W	0x0000_0000	FLASH 控制寄存器 0
CFG1	0x14	R/W	0x0000_0000	FLASH 控制寄存器 1
STAT	0x18	R	0x0000_0000	状态寄存器
REMAP	0x28	R/W	0x0000_0000	地址映射寄存器

6.25.5 寄存器描述

写数据寄存器 DATA

寄存器	偏移	类型	复位值	描述
DATA	0x00	R/W	0x0000_0000	写数据寄存器

31	30	29	28	27	26	25	24			
	DATA									
23	22	21	20	19	18	17	16			
	DATA									
15	14	13	12	11	10	9	8			
	DATA									
7	6	5	4	3	2	1	0			
	DATA									

位域	名称	描述
31:0	DATA	需要写的数据

写地址寄存器 ADDR

寄存器	偏移	类型	复位值	描述
ADDR	0x04	R/W	0x0000_0000	写地址寄存器

31	30	29	28	27	26	25	24		
				-					
23	22	21	20	19	18	17	16		
				-					
15	14	13	12	11	10	9	8		
	ADD								
7	6	5	4	3	2	1	0		
	ADD								

位域	名称	描述
31:16	-	_
15:0	ADD	Flash 写入起始地址

擦除寄存器 ERASE

寄存器	偏移	类型	复位值	描述
ERASE	0x08	R/W	0x0000_0000	擦除寄存器

31	30	29	28	27	26	25	24			
	EN									
23	22	21	20	19	18	17	16			
				-						
15	14	13	12	11	10	9	8			
	PAGE									
7	6	5	4	3	2	1	0			
	PAGE									

位域	名称	描述				
24.24	EN	擦使能				
31:24		注:此位写 0xFF 才可打开擦功能				
23:16	-	-				
15.0		擦 Page 的编号				
15:0	PAGE	注: 全1表示整个 eFlash 擦除				

CACHE 寄存器 CACHE

寄存器	偏移	类型	复位值	描述
CACHE	0X0C	R/W	0x0000_0000	CACHE 寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
		-			CCLR	CPEN	CEN
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
			-				PROGEN

位域	名称	描述
31:19	-	-
		清 CACHE 使能,写 1 清零
18	CCLR	1: 使能
		0: 不使能
		CACHE 预取开关使能,默认关闭
17	CPEN	1: 使能
		0: 不使能
		CACHE 使能,默认开启
16	CEN	1: 使能
		0: 不使能
15:1	-	-
		FALSH 写使能
0	PROGEN	1: 使能
		0: 不使能

FLASH 控制寄存器 0 CFG0

寄存器	偏移	类型	复位值	描述
CFG0	0x10	R/W	0x0000_0000	FLASH 控制寄存器 0

31	30	29	28	27	26	25	24		
				-					
23	22	21	20	19	18	17	16		
	-			Tnvstr			Trcv		
15	14	13	12	11	10	9	8		
Trcv	Trcv Tacc				Tpws		Trdy		
7	6	5	4	3	2	1	0		
			Toe eflash_tas						

位域	名称	描述
31:7	-	-
20:8	Tnvstr	NVSTR 有效滞后于 AE 有效的延时,手册最小 20ns
17:15	Trcv	恢复时间,从 TBIT 无效到 AE 再次有效的间隔时间,最小 10ns
14:12	Тасс	问延时周期数,不超过 30ns
11:9	Tpws	AE 高电平脉宽持续周期数,最小 10ns
8:6	Trdy	delay cell number. 每个 bit 控制 1 个 delay cell,
5:3	Тое	delay cell number. 每个 bit 控制 1 个 delay cell,1 使能
2:0	eflash_tas	delay cell number. 每个 bit 控制 1 个 delay cell,1 使能

FLASH 控制寄存器 1 CFG1

寄存器	偏移	类型	复位值	描述
CFG1	0x14	R/W	0x0000_0000	FLASH 控制寄存器 1

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
			-				EN

位域	名称	描述
31:1	-	-
0	EN	information block enable

状态寄存器 STAT

寄存器	偏移	类型	复位值	描述
STAT	0x18	R	0x0000_0000	状态寄存器

31	30	29	28	27	26	25	24
IDLE				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
	-		FIFOFULL	FIFOEMPTY	READBUSY	PROGBUSY	ERASEBUSY

位域	名称	描述			
21	IDLE	1: flash 空闲			
31	IDLE	0: flash 忙			
30:5	-	-			
4	FIFOFULL	write FIFO 满			
3	FIFOEMPTY	write fifo 空			
2	READBUSY	read 操作进行中,RO			
1	PROGBUSY	program 操作进行中,RO			
0	ERASEBUSY	erase 操作进行中,RO			

址映射寄存器 REMAP

寄存器	偏移	类型	复位值	描述
REMAP	0x28	R/W	0x0000_0000	地址映射寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
-	OFFSET				ON		

位域	名称	描述
31:7	-	-
C-1	OFFCET	BASEADD 地址
6:1	OFFSET	将 0 地址开头的 2KB 地址的访问都映射到 BASEADD 基地址对应的 2K 地址
		REMAP
		1: 打开
0	ON	0: 关闭
		注:REMAP 操作只作用于 FLASH 读取操作。
		注:进入和退出 REMAP 前需建议关闭 CACHE 功能,并执行一次 CACHE 清除操作

6.26 比较器(CMP)

6.26.1 概述

本芯片包括 4 路模拟比较器,不同型号模块数量可能不同。

CMP0~2 的 OUT 端可直接选择接入 HALL 信号,可以通过电阻连接,作为 0/1/2 N 端输入。

比较器 3 的 OUT 端直接连接至 PWM_BRK2 (PWM_BRK2 仅支持 CMP3)。

6.26.2 特性

● 比较器

- 内置 DAC,可编程控制负端输入基准 VREF
- 带有迟滞比较的输入
- 中断(输出有变化时产生)
- CMPO~2 可直接选择接入 HALL
- CMP3 直接接至 PWM BRK2

6.26.3 模块结构框图

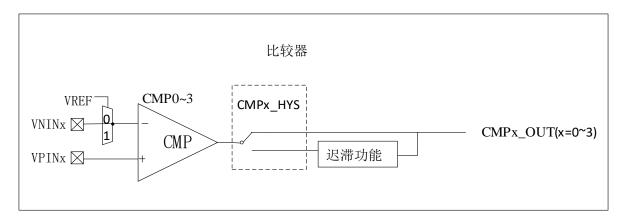


图 6-106 比较器框图

6.26.4 功能描述

本芯片有 4 个比较器,当其正极(cpxinp)输入大于负极(cpxinn)时,结果为逻辑 1,反之为逻辑 0。

每一路比较器可分别配置为 2 种输出模式, 分别是:

- 普通输出(ACMPCR 寄存器 CMPxHYS 位对应位置 0)
- 带有滤波比较的输出

在以上两种输出模式中,比较器 CMPx 的输出结果不会送往 OPVOUTx 管脚所复用的 GPIO 端口,仅仅存储在寄存器 ACMPSR 中的 CMPxOUT 中,可以通过寄存器读取查看。

例如,在使用比较器 0 时,将相应管脚复用为比较器端口。那么当选择为普通输出模式时,比较器 CMPO 的输出结果可在寄存器 ACMPSR 中的 CMPOOUT 读取。如果在 ACMPCR 中配置了 CMPO 的中断使能,比较器 0 的输出变化会触发中断,中断状态可在 ACMPSR 中的 CMPOIF 位查看。

CMPO~3 同时支持反向端连接内部 VREF, 可通过 ACMPCR2 寄存器 xNVR 位配置。

比较器配置

- 配置需使用的比较器管脚使其切换为模拟信号模式,比较器的正端输入引脚和负端输入引脚都需要切换为模拟功能模式
- 配置输入引脚的中断使能(ACMPCR.CMPxIE),可配置为不产生中断,也可配置为当 比较器输出有变化(包括从 0 到 1 和从 1 到 0)时产生引脚中断
- 配置 CMP 迟滞是否开启(ACMPCR.CMPxHYS)
- 配置 CMPx 使能寄存器 (ACMPCR.CMPxON), 使能 CMP
- 在 ACMPSR 中查看比较器输出结果和中断状态

迟滞

带有迟滞比较的输出模式有 15mV 迟滞。比较器迟滞电压模块可通过 ACMPCR 寄存器 CMPxHYS 位配置。

在迟滞比较的输出模式下,迟滞电压与输出电平反向。当输入信号过零后,输出信号跳转,控制迟滞电压极性,使得输入信号远离过零点,避免输入噪声造成比较器的输出跳变。其示意图如图 6-107 所示:

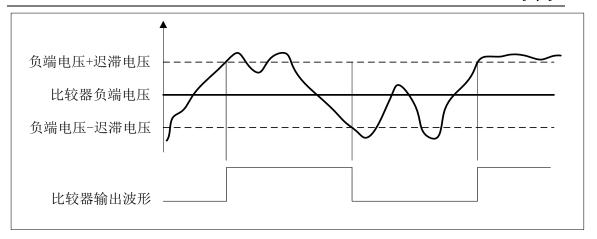


图 6-107 比较器迟滞功能示意图

比较器滤波

此外,比较器的输出端内置 filter1 软件滤波。

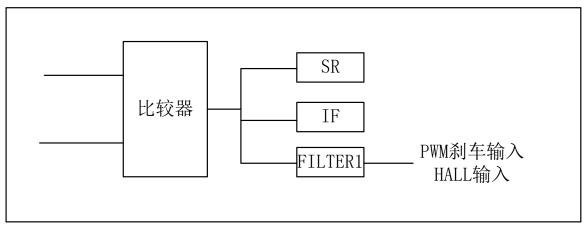


图 6-108 SR/IF 与 FILTER1 关系

如图 6-108 所示,FILTER1 不能对比较器输出的状态和中断标志滤波,但输出的信号连接至 PWM 刹车及 HALL 输入时经过了 FLITER1 的滤波,其最终状态可能与输出至 WM 刹车及 HALL 的状态不一致。如图 6-109 所示:

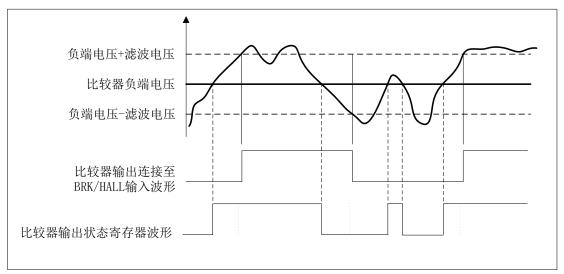


图 6-109 比较器 FILTER1 滤波波形

中断配置与清除

比较器支持中断标志变化中断,标志变化包括从0到1和从1到0,此中断写1清零。

比较器 HALL 连接

CMP0~2 同时支持连接至 HALL0~2 信号输入,可通过 ACMPCR2 寄存器 HALLx 位配置,可选择为 CMPxOUT 引脚。

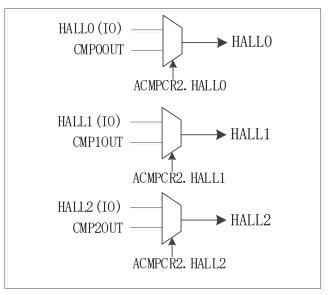


图 6-110 HALL 对应关系图

PWM_BRK

比较器 3 的 OUT 端直接连接至 PWM_BRK2(PWM_BRK2 仅支持 CMP3)

配置特性

比较器支持 P 端分压模式配置,在此模式下,CMP0~2 的 N 端内部相连,CMP0~2 的 N 端的输入为 CMP0~2 的 P 端输入经过 8.2K 电阻分压后的值。其结构示意图如图 6-111 所示:

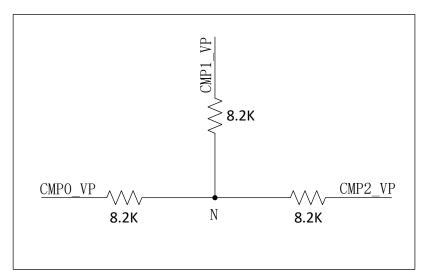


图 6-111 P 端分压模式结构示意图

其结构图如图 6-112 所示:

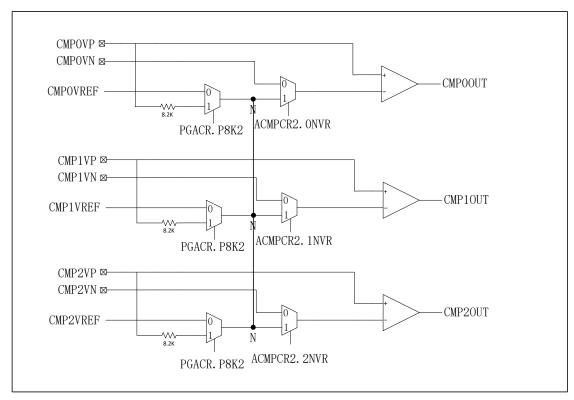


图 6-112 P 端分压模式结构图

配置步骤:

- 配置 ACMPCR2 寄存器 0VNR 位、1NVR 位和 2NVR 位同时为 1,选通 CMP0~2 反向端连 接内部 VREF
- 配置 ACMPCR 寄存器 CMP0ON 位、CMP1ON 位和 CMP2ON 位为 1,开启 CMP0~2
- 经以上步骤配置,可将 CMP 配置为 P 端分压模式

6.26.5 寄存器映射

名称	偏移	类型	复位值	描述			
ANALOG E	BASE: 0x400AA000						
ACMPCR	0x080	R/W	0x0000_0000	CMP 控制寄存器			
ACMPSR	0x84	R/W	0x0000_0000	CMP 状态寄存器			
ACMPCR2	0X88	R/W	0x0000_0000	CMP 输出至 CFG 控制寄存器			
DACCR	0x090	R/W	0x0000_0000	ACMP VREF 电压控制寄存器			

6.26.6 寄存器描述

比较器控制寄存器 ACMPCR

寄存器	偏移	类型	复位值	描述
ACMPCR	0x080	R/W	0x0000_0000	CMP 控制寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
-				СМРЗІЕ	CMP2IE	CMP1IE	CMPOIE
15	14	13	12	11	10	9	8
СМР	3HYS	СМР	2HYS	CMP1HYS		СМРОНҮЅ	
7	6	5	4	3	2	1	0
	-	-		CMP3ON	CMP2ON	CMP10N	CMPOON

位域	名称	描述
31:20	-	-
		CMP3 中断使能寄存器
19	СМРЗІЕ	0: 关闭
		1: 开启
		CMP2 中断使能寄存器
18	CMP2IE	0: 关闭
		1: 开启
		CMP1 中断使能寄存器
17	CMP1IE	0: 关闭
		1: 开启
		CMP0 中断使能寄存器
16	СМРОІЕ	0: 关闭
		1: 开启
		CMP3 迟滞使能寄存器
15:4	CMP3HYS	0: 关闭迟滞
15.4	CIVIFSHTS	1: 15mV 迟滞
		其他: 保留
		CMP2 迟滞使能寄存器
13:12	CMP2HYS	0: 关闭迟滞
13:12	CIVIPZETS	1: 15mV 迟滞
		其他: 保留

SWM211 系列

			PANIAISTT VICT.
		CMP1 迟滞使能寄存器	
11.10	CMP1HYS	0: 关闭迟滞	
11:10	O CIVIFILITS	1: 15mV 迟滞	
		其他: 保留	
		CMP0 迟滞使能寄存器	
0.0	СМРОНҮЅ	0: 关闭迟滞	
9:8	CIVIPUHYS	1: 15mV 迟滞	
		其他: 保留	
7:4	-	-	
		CMP3 使能寄存器	
3	СМРЗОМ	0:关闭 CMP	
		1: 开启 CMP	
		CMP2 使能寄存器	
2	CMP2ON	0:关闭 CMP	
		1:开启 CMP	
		CMP1 使能寄存器	
1	CMP1ON	0:关闭 CMP	
		1: 开启 CMP	
		CMP0 使能寄存器	
0	CMPOON	0:关闭 CMP	
		1: 开启 CMP	

比较器状态寄存器 ACMPSR

寄存器	偏移	类型	复位值	描述
ACMPSR	0x84	R/W	0x0000_0000	CMP 状态寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
-				CMP3IF	CMP2IF	CMP1IF	CMP0IF
7	6	5	4	3	2	1	0

位域	名称	描述
31:12	-	-
		比较器 3 中断标志
11	CMP3IF	1: 表示输出有变化(包括从0到1和从1到0)
		0: 写 1 清标志
		比较器 2 中断标志
10	CMP2IF	1: 表示输出有变化(包括从0到1和从1到0)
		0: 写 1 清标志
		比较器 1 中断标志
9	CMP1IF	1: 表示输出有变化(包括从0到1和从1到0)
		0: 写 1 清标志
		比较器 0 中断标志
8	CMPOIF	1: 表示输出有变化(包括从0到1和从1到0)
		0: 写 1 清标志
7:4	-	-
		比较器 3 结果输出
3	СМРЗОИТ	1: P端>N端时输出 1
		0: N 端>P 端时输出 0
		比较器 2 结果输出
2	CMP2OUT	1: P 端>N 端时输出 1
		0: N 端>P 端时输出 0
		比较器 1 结果输出
1	CMP1OUT	1: P端>N端时输出 1
		0: N 端>P 端时输出 0
		比较器 0 结果输出
0	СМРООИТ	1: P 端>N 端时输出 1
		0: N 端>P 端时输出 0

比较器输出至 CFG 控制寄存器 ACMPCR2

寄存器	偏移	类型	复位值	描述
ACMPCR2	0X88	R/W	0x0000_0000	CMP 输出至 CFG 控制寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
	_			3NVR	2NVR	1NVR	ONVR
		•		SINVIN	ZIVIN	TIAAK	UNVK
7	6	5	4	3	2	1	0

位域	名称	描述
31:12	-	-
		CMP3 反向端连接内部 VREF,选通使能寄存器
11	3NVR	0: 无效
		1: 有效
		CMP2 反向端连接内部 VREF 选通使能寄存器
10	2NVR	0: 无效
		1: 有效
		CMP1 反向端连接内部 VREF 选通使能寄存器
9	1NVR	0: 无效
		1: 有效
		CMP0 反向端连接内部 VREF 选通使能寄存器
8	ONVR	0: 无效
		1: 有效
7:3		
		HALL2 信号输入选择
2	HALL2	1: CMP2OUT
		0:对应功能(HALL2)引脚
		HALL1 信号输入选择
1	HALL1	1: CMP1OUT
		0:对应功能(HALL1)引脚
		HALLO 信号输入选择
0	HALLO	1: CMP0OUT
		0:对应功能(HALLO)引脚

比较器 VREF 控制寄存器 DACCR

寄存器	偏移	类型	复位值	描述
DACCR	0x090	R/W	0x0000_0000	ACMP VREF 电压控制寄存器

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
			II	N			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
			-				EN

位域	名称	描述
31:24	-	-
		DAC 数据输入,输入范围为 0~5V,步长为 20mV
		0: 0V
		1: 20mV
		2: 40 mV
		3: 60mV
		4: 80mV
		5: 100mV
22.46		N: N x 20mv
23:16	IN	245: 4900mV
		246: 4920mV
		247: 4940mV
		248: 4960mV
		249: 4980mV
		250: 5000mV
		251~255: 保留
		注:建议 DAC 输出 1V 以上时使用
15:1	-	-
		DAC 使能寄存器,使能后,将为比较器提供 VREF 电压
0	EN	0: 关闭
		1: 开启

6.27 放大器 (OPA)

6.27.1 概述

本芯片包括 4 路运算放大器,不同型号模块数量可能不同。

OPA1~3 支持 OPA 和 PGA 两种工作模式,在 PGA 模式下,可通过内部连接,为 PGA 模式下的 OPA1/OPA2/OPA3 提供 2.5V 电压偏置。

6.27.2 特性

● 放大器

- 片外工作
- OPA1~3 支持 PGA, 支持 10/15/20 倍放大
- OUT 引脚直接进入复用 ADC 模块
- 2.5V 基准可 trim

6.27.3 模块结构框图

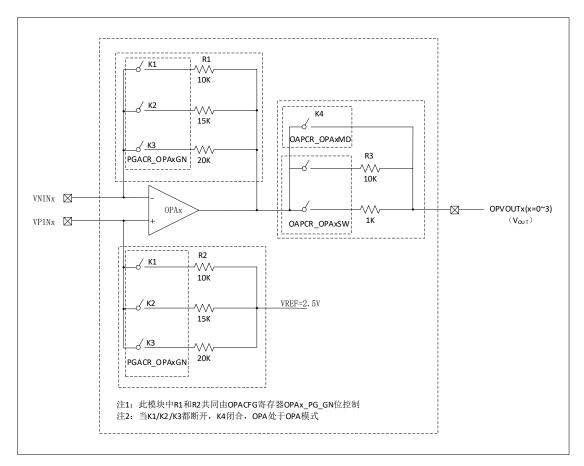


图 6-113 放大器框图

6.27.4 功能描述

本芯片有 4 个放大器,放大器正极(opxinp)、负极(opxinn)和输出端(opxout)为开环放大器的 3 个端口。可以搭建外电路以确定放大器的放大倍数。典型放大电路如图 6-114 所示。

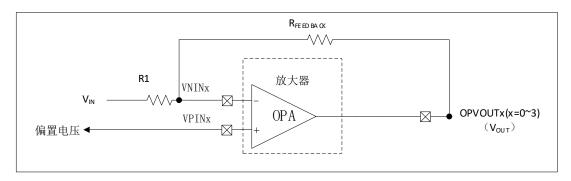


图 6-114 典型放大电路

放大倍数为:

$$V_{OUT} = \left(\frac{R_{FEEDBACK}}{R_1}\right)$$
 (偏置电压 $-V_{IN}$) + 偏置电压

此放大器支持偏置电流(5ua 或 10ua)、驱动能力(x1 或 x2)、PGA 等。可通过 OPACR 寄存器 OPAXIB 位配置 OPA 偏置电流为 5ua 或 10ua;配置 OPAXDV 位配置驱动能力为 1 倍或两倍;通过配置 OPACR 寄存器 OPAXMD 位选择 OPA 对应的工作模式。

放大器配置

- 配置需使用的放大器管脚使其切换为模拟信号模式
- 配置 OPACR 寄存器,配置放大器参数
- 配置 OPAx 使能寄存器 (OPACR.OPAxON), 使能 OPA

ADC 复用

当放大器的功能引脚与 ADC 的功能引脚位于同一个物理引脚上时,放大器 OPAx 的 OUTx 引脚可直接复用对应的 ADC_CHx 引脚,只需将对应引脚的功能复用通过 PORT 模块中 PORTx_FUNCx 对应配置改为 ADC_CHx 即可通过 ADC 采集 OUT 脚上的电压,但此时 OUT 引脚不能作为其他功能使用,只有内部关闭 OPAO 运放(或一开始就不启用),才可以配置为正常的 IO 口和数字功能,或者除采集 OPxOUT 电压以外的 ADCOCH3 采样。

内置偏置

在偏置模式下,内部电路为 OPA 的 PGA 模式提供偏置,此模式下可提供的 VREF 2.5V 的偏置电压,可通过配置 OPACR 寄存器中 VREFON 位选择 PGA 模式即可配置。

此 2.5V 基准可通过 PGACR 寄存器 TRIM 位配置 VREF 的 2.5V 基准, 并可输出到 OPAVREF 引脚;

PGA 功能

OPA1~3 支持 OPA 和 PGA 两种工作模式,在 OPA 模式下,OPA1、OPA2、OPA3 是一个普通的三端运算放大器。

在 PGA 模式下,可通过内部连接,为 PGA 模式下的 OPA1/OPA2/OPA3 提供 2.5V 电压偏置,其内部结构图如图 6-115 所示:

在 PGA 模式下, OPA1/OPA2/OPA3 是一个通过选择内置反馈电阻(10k、15k、20k)选择增益倍数的可编程增益放大器(可配置 PAGCR 寄存器),可以省略外部的反馈电阻,通过对应 ADC 通道直接采集相应的 OPA_OUT 输出,但此时 OUT 引脚也不能作为其他功能使用。

OPA1/OPA2/OPA3 其内部结构图如所示:

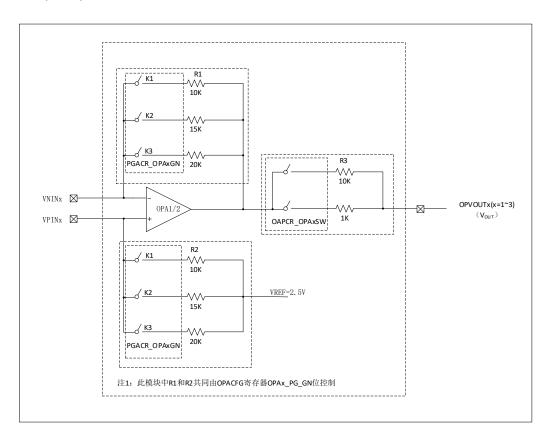


图 6-115 PGA 内部结构图

如所示为 OPA1/OPA2/OPA3 PGA 模式内部结构图,图中 R1 和 R2 同时由 PGACR 寄存器中 OPAXGN 位控制,R1 和 R2 的阻值可同时设置为 10K/15K/20K;R3 为滤波电阻,其阻值可通过 OPACR 寄存器 OPAXSW 位设置,可设置为 1K/10K。

此模块中 VREF 为片内偏置电压,由电压值为 2.5V(±10%)。

PGA 应用

PGA 应用模式如图 6-116 所示:

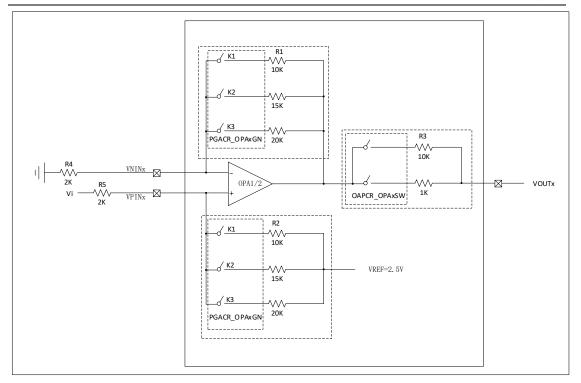


图 6-116 PGA 应用参考图

如图 6-116 示,此模式下外部电路中 PGA 负端经 2K 电阻 R4 接 GND,正端经 2K 电阻 R5 接输入电压 V_i 。

在程序中配置为 PGA 增益反馈电阻 R1 选择 10k(R2 选择与 R1 同步),开启内部参考电压 VREF,且设为 2.5V,则 PGA 输出电压计算过程如下:

(Vo-Vn)/10K = (Vn-0)/2K

故: Vo = 6Vn = 6Vp

(2.5V-Vp)/10K = (Vp-Vi)/2K

2.5V = 6Vp - 5Vi

6Vp = 2.5V + 5Vi

故: Vo = 6Vp = 2.5V + 5Vi

偏置电流

OPAO~OPA3 可实现偏置电流的配置,可通过配置 OPACR 寄存器 OPAxIB 位配置为 5uA 或 10uA,通过调整偏置电流可影响放大器的压摆率,偏置电流增大会导致压摆率增大。

6.27.5 寄存器映射

名称	偏移	类型	复位值	描述	
ANALOG E	BASE: 0x400AA000				
OPACR	0x70	R/W	0x0000_0000	OPA 控制寄存器	
PGACR	0x074	R/W	0x0000_0000	OPA 配置寄存器	

6.27.6 寄存器描述

放大器控制寄存器 OPACR

寄存器	偏移	类型	复位值	描述
OPACR	0x70	R/W	0x0000_0000	OPA 控制寄存器

31	30	29	28	27	26	25	24
-			OPA3IB	OPA2IB	OPA1IB	OPA0IB	
23	22	21	20	19	18	17	16
OPA	3DV	OPA	2DV	OPA1DV		OPA0DV	
15	14	13	12	11	10	9	8
				-			
7	6	5 4		3	2	1	0
OPA3MD	OPA2MD	OPA1MD	VREFON	OPA3ON	OPA2ON	OPA1ON	OPA00N

位域	名称	描述
31:28	-	-
		OPA3 偏置电流选择寄存器
27	OPA3IB	0: 5uA
		1: 10uA
		OPA2 偏置电流选择寄存器
26	OPA2IB	0: 5uA
		1: 10uA
		OPA1 偏置电流选择寄存器
25	OPA1IB	0: 5uA
		1: 10uA
		OPA0 偏置电流选择寄存器
24	OPA0IB	0: 5uA
		1: 10uA
		OPA3 输出驱动能力使能寄存器
23:22	OPA3DV	00: X1
23.22	OFASDV	01: X2
		10/11: 保留
		OPA2 输出驱动能力使能寄存器
21:20	OPA2DV	00: X1
21.20	OFAZDV	01: X2
		10/11: 保留

SWM211 系列

	357 100 9740 975 974		3WIVIZII 示ツi
		OPA1 输出驱动能力使能寄存器	
		00: X1	
19:18	OPA1DV	01: X2	
		10/11: 保留	
		OPAO 输出驱动能力使能寄存器	
		00: X1	
17:16	OPA0DV	01: X2	
		10/11: 保留	
15:8	-	-	
		OPA3 工作模式选择寄存器	
7	OPA3MD	0: OPA	
		1: PGA	
		OPA2 工作模式选择寄存器	
6	OPA2MD	0: OPA	
		1: PGA	
		OPA1 工作模式选择寄存器	
5	OPA1MD	0: OPA	
		1: PGA	
		PGA1/2 的正输入端接入内部 VREF(2.5V)位	
4	VREFON	0: 不接入	
		1: 接入	
		OPA3 使能寄存器	
3	OPA3ON	0: 关闭	
		1: 开启	
		OPA2 使能寄存器	
2	OPA2ON	0: 关闭	
		1: 开启	
		OPA1 使能寄存器	
1	OPA1ON	0: 关闭	
		1: 开启	
		OPA0 使能寄存器	
0	OPA0ON	0: 关闭	
		1: 开启	

放大器配置寄存器 PGACR

寄存器	偏移	类型	复位值	描述
PGACR	0x074	R/W	0x0000_0000	OPA 配置寄存器

31	30	29	28	27	26	25	24	
			-				P8K2	
23	22	21	20	19	18	17	16	
	CMF	PREF		OPA3SW C			PA2SW	
15	14	13	12	11	10	9	8	
OPA	1SW			-		OPA	3GN	
7	6	5	4	3	2	1	0	
OPA2GN OPA1GN			1GN		-	-		

位域	名称	描述
31:25	-	-
		P 端分压模式使能位
24	P8K2	0: 不使能
		1: 使能
		调节 DAC 输入参考电压 2.5V
		0000: 2.42V
23:20	CMPREF	0001: 2.43V
		N: 2.42+0.01V*N
		1111: 2.57V
		OPA3 处于 PGA 模式下,PGA 选择滤波电阻阻值,上电默认选择为 00
19:18	OPA3SW	x0: 输出连接 1K 电阻
		x1:输出连接 10K 电阻
		OPA2 处于 PGA 模式下,PGA 选择滤波电阻阻值,上电默认选择为 00
17:16	OPA2SW	x0: 输出连接 1K 电阻
		x1: 输出连接 10K 电阻
		OPA1 处于 PGA 模式下,PGA 选择滤波电阻阻值,上电默认选择为 00
15:14	OPA1SW	x0: 输出连接 1K 电阻
		x1:输出连接 10K 电阻
13:10	-	-
		OPA3 处于 PGA 模式下,PGA 增益选择,上电默认为 00
		00: 连接内部电阻 10K
9:8	OPA3GN	01:连接内部电阻 15K
		10: 连接内部电阻 20K
		11: 连接内部电阻 20K

SWM211 系列

电默认为 00
电默认为 00

7 典型应用电路

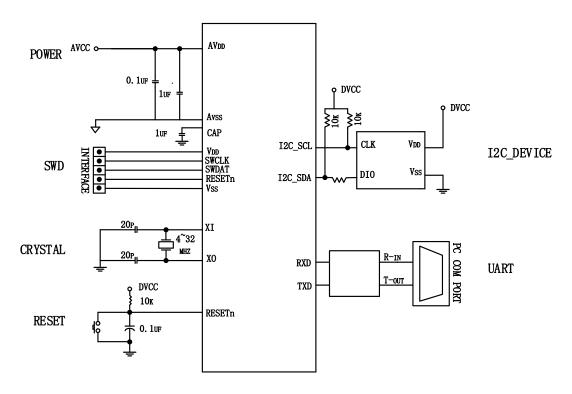


图 7-1 典型应用电路图

8 电气特性

本章提供了 SWM211 系列电气参数,包括额定值,DC 参数及 AC 参数。

8.1 绝对最大额定值

表格 8-1 绝对最大额定值

参数	最大值	典型值	最小值	符号	单位
直流电源电压	6	-	-0.3	Vdd-Vss	V
晶振频率	90	90	-	1/Tclk	MHz
工作温度	105	-	-40	Tw	°C
贮存温度	150	-	-50	Ts	°C
单一管脚最大灌电流	20	12	_	_	mA
单一管脚最大源电流	20	12	_	_	mA
所有管脚输入电流和	120	-	_	_	mA
所有管脚输出电流和	120	-	_	_	mA
静电保护	8000			Vesd	V
(human body model)	8000	_	_	vesa	V

8.2 DC 电气特性

表格 8-2 DC 电气特性(Vdd-Vss = 5.0V, Tw =25°C))

参数	最大值	典型值	最小值	符号	单位	测试条件
工作电压	5.5	5.0	2.5	Vdd	٧	_
模拟工作电压	Vdd	_	0	Avdd	Tw	_
模拟参考电压	_	Avdd	_	Vref	٧	_
普通工作模式下电流	_	20	_	mA	Idd0	Vdd=5.0V, Enable all IP, Internal OSC While(1);
(90MHz)	_	13.6	_	mA	ldd1	Vdd=5.0V, Disable all IP, Internal OSC While(1);
普通工作模式下电流	_	12.5	_	mA	Idd2	Vdd=5.0V, Enable all IP, Internal OSC While(1);
(60MHz)		10.3	_	mA	Idd3	Vdd=5.0V, Disable all IP, Internal OSC While(1);
普通工作模式下电流	_	7.4	_	mA	Idd4	Vdd=5.0V, Enable all IP, Internal OSC While(1);
(30MHz)	_	6.3	_	mA	Idd5	Vdd=5.0V, Disable all IP, Internal OSC While(1);
普通工作模式下电流 (32KHz)	_	1.8	_	mA	Idd7	Vdd=5.0V, Disable all IP, Internal OSC While(1);
SLEEP MODE	_	80	_	uA	Idd10	Vdd = 5.0V
Low-level Input Voltage	0.3Vdd	_	_	V	VIL	Input Enable
High-level Input Voltage	_	_	0.7Vdd	V	VIH	Input Enable
Low-level	0.4	_	_	V	VOL	2.5V≤Vdd<3.3V
Output Voltage	_	_	0.6	V	VOL	3.3V≤Vdd≤5V
High-level	-	_	Vdd-0.4	٧	VOH	2.5V≤Vdd<3.3V
Output Voltage	_	_	Vdd-0.6	V	VOH	3.3V≤Vdd≤5V
上拉电阻	_	50	_	RPU	ΚΩ	_
下拉电阻	_	95	_	RPD	ΚΩ	_

8.3 AC 电气特性

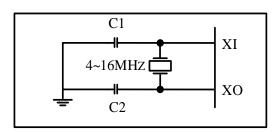
8.3.1 内部振荡器

表格 8-3 内部振荡器特征值

参数	最大值	典型值	最小值	单位	条件
电压	5.5	5.0	2.5	V	_
中心频率	_	60	_	MHz	_
内部震荡矫正	1	_	-1	%	Tw = 25°C Vdd = 5.0V
竹印辰冰水止	2	_	-2	%	Tw = -40°C~105°C, Vdd = 2.5V~5.5V

8.3.2 外部 4-16MHz 晶体振荡器

表格 8-4 外部 4-16MHz 晶体振荡器


参数	最大值	典型值	最小值	单位	测试条件
工作电压	5.5	-	2.5	V	_
温度	105	-	-40	°C	_
工作电流	-	0.8	-	Ma	12 MHz, VDD = 5.0V
时钟频率	16	-	4	MHz	-

8.3.3 典型电路

表格 8-5 外部振荡器典型电路

晶振	C ₁	C ₂
4MHz ~ 16 MHz	10~20 pF	10~20 pF

8.3.4 上电速度要求

参数	最大值	典型值	最小值	单位	符号
电源供电上升时间	2.0	-	-	ms	Tr

注: 当电源电压上升较慢时,需要通过 reset 引脚保证上电稳定性;或通过 BOD 复位保证上电稳定性, BOD 复位为电平复位, 内部默认一直开启,且对上电速度要求较低。

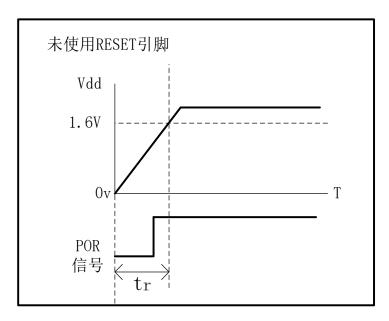


图 8-1 上电复位时间示意图

8.4 模拟器件特性

8.4.1 SARADC 特性

表格 8-6 SAR ADC 特征值

参数	最大值	典型值	最小值	符号	单位
分辨率	12	_	_	_	bit
工作电流(平均)	_	5	_	Idda	mA
非线性差分误差	3	_	_	DNL	LSB
非线性积分误差	3.5	_	_	INL	LSB
采样速率	_	1	0.05	FS	MHz
工作时钟频率	_	1	0.05	FCLK	MHz
采样延时	_	1	_	TADC	Cycles
参考电压	AVDD	AVDD	3.0	VREFIN	V
电容值(每通道)	5	_	_	_	pF
工作电压	5.5	5.0	3.0	Avdd	V

8.4.2 放大器特性

表格 8-7 放大器特征值

参数	最大值	典型值	最小值	符号	单位
模拟电源电压	5.5	_	2.5	AVDD	V
消耗电流	_	700	- -	IDD	uA
共模电压范围	AVDD	_	0	CMIR	V
输入失调电压	_	-	7	VOFFSET	mV
高饱和电压	AVDD-0.1	-	_	VOHSAT	V
低饱和电压	_	-	100	VOLSAT	mV
共模抑制比	_	90	_	CMRR	dB
电源抑制比	_	110	_	PSRR	dB
单位增益带宽	_	8.0	_	GBW	MHz
压摆率	_	4.5	_	SR	V/us
阻性负载	4	_	_	RLOAD	kΩ
容性负载	_	_	50	CLOAD	pF
比较器内置偏置电压	2.3	2.5	2.7	VREFON	V

8.4.3 比较器特性

表格 8-8 比较器特征值

参数	最大值	典型值	最小值	符号	单位
模拟电源电压	5.5	_	2.5	AVDD	V
输入电压	4.8	ı	0.2	VI	V
工作电流	500	_	-	IDD	uA
共模电压范围	AVDD	_	0	CMIR	V
输入失调电压	_	_	7	VOFFSET	mV
温度	105	25	-40	TA	°C

8.4.4 LDO 特性

表格 8-9LDO 特征值

参数	最大值	典型值	最小值	符号	单位
DC 输入电压	5.5	-	2.5	VDD	V
输出电压	1.98	1.8	1.62	VLDO	V
温度	105	25	-40	TA	°C

8.4.5 Brown-out Detector

参数	符号	BODCR	典型值	单位	测试条件
		INT	LVL		
	BOD 中断 VBODINT	000	1.90		
202 H#E		001	2.10	V	VDD=5V
ROD H-MAI		010	2.30	V	TA = 25 °C
		011	2.50		
		100	2.70		
		RST	LVL		
		000	1.65		
pop 复位	VBODRST	001	1.85	V	VDD=5V
BOD 复位 VBODR	VBODRST	010	2.05	V	TA = 25 °C
		011	2.65		
	 	100	3.45		

8.4.6 Power-on Reset

参数	最大值	典型值	最小值	符号	单位
温度	105	25	-40	TA	°C
复位电压	2.4	2	1.6	VPOR	V
VDD 起始电压来确保上电复位	200	-	-	VPOR	mV
VDD 上升率来确保上电复位	-	-	0.8	RRVDD	V/ms

8.4.7 FLASH DC 电气特性

参数	最大值	典型值	最小值	符号	单位
擦写次数	_	_	100K	NENDUR	Cycles
数据保留	_	_	10	TRET	year
页擦除时间	2	_	_	TERASE	ms
编程时间	20	_	_	TPROG	us
读电流	_	350	_	IDD1	uA/MHz
编程电流	_	4	_	IDD2	mA
擦除电流	_	4	_	IDD3	mA

8.5 3P3N DRIVER 特性

8.5.1 绝对最大额定值

表格 8-10 3P3N DRIVER 绝对最大额定值

参数	最大值	典型值	最小值	符号	单位
电源电压	40	_	-0.3	VP, VPM	
高侧输出电压	VP	_	VP-12	HO1, HO2, HO3	
低侧输出电压	12	_	-0.3	LO1, LO2, LO3	V
LD0 输出电压	5.5	_	-0.3	VLDO5	
逻辑输入电压	20	_	-0.3	HI1, HI2, HI3, LI1, LI2, LI3	
工作温度	150	_	-40	T _J	
工作环境湿度	125	_	-40	T _A	°C
存储温度	150	_	-65	T _{STG}	
热阻	260	_	_	θ_{JA}	°C/W

8.5.2 推荐工作范围(T_A=25℃)

表格 8-11 3P3N DRIVER 推荐工作范围

参数	最大值	典型值	最小值	符号	单位
电源电压	36	_	-0.3	VP, VPM	
高侧输出电压	VP	_	VP-10	HO1, HO2, HO3	
低侧输出电压	10	-	-0.3	LO1, LO2, LO3	V
LD0 输出电压	5.0	-	-0.3	VLDO5	
逻辑输入电压	15	-	-0.3	HI1, HI2, HI3, LI1, LI2, LI3	
工作温度	125	-	-40	Tı	°C

8.5.3 电气特性(V_P=24V,C_L=1000pF, T_A=25℃)

表格 8-12 3P3N DRIVER 电气特性

参数	最大值	典型值	最小值	符号	单位					
工作电流										
VP 静态电流	_	500	_	ICC, ON	uA					
HI1, HI2, HI3, LI1, LI2, LI3 逻辑输入特性										
逻辑高电位	_	_	_	VHI	V					
逻辑低电位	0.8	_	0	VLI	V					
下拉电阻	_	140	-		ΚΩ					
输出驱动能力										
高侧上管输出电压	_	10	_	VHO	V					
向侧上官棚山屯压	_	VP-10	_		V					
化侧丁整 捻山击压	_	VP	_	VLO	V					
低侧下管输出电压	_	10	_		V					
低侧/高侧上管输出峰值电流	_	300	_	IOHL	mA					
低侧/高侧下管输出峰值电流	_	60	-	HOLL	mA					
LOD 輸出特性										
VDD 输出电压	5.3	5.0	4.7	VDD	V					
保护特性										
VM UVLO 上升保护阈值	_	6.55	_	VMUV_R	V					
VM UVLO 下降保护阈值	_	6.05	-	VMUV_F	V					
VM UVLO 迟滞	_	500	-	VMUV_H	mV					
过温保护点	_	150	_	TTSD	°C					
过温保护迟滞	_	15	_	THYS	°C					

8.5.4 动态电特性(V_P=24V,C_L=1000pF, T_A=25℃)

表格 8-13 3P3N DRIVER 动态电特性

参数	最大值	典型值	最小值	符号	单位
开通延时	_	80	_	TOND	ns
关断延时	-	50	_	TOFFD	ns
上管上升时间	_	35	_	THR	ns
上管下降时间	_	450	_	THF	ns
下管上升时间	_	240	_	TLR	ns
下管下降时间	_	40	_	TLF	ns
死区时间	_	50	_	DT	ns

8.6 6N DRIVER(SWM21DC8U7/D8U7)特性

8.6.1 绝对最大额定值(T_A=25℃)

表格 8-14 6N DRIVER(SWM21DC8U7/D8U7)绝对最大额定值

参数	最大值	典型值	最小值	符号	单位
High side floating supply	300	-	-0.3	VB1, VB2, VB3	
High side floating supply return	VB+0.3	-	VB- 25	VS1, VS2, VS3	
High side gate drive output	VB+0.3	-	VS- 0.3	HO1, HO2, HO3	V
Low side and main power supply	25	_	-0.3	PVDD	V
Low side gate drive output	PVDD+0.3	-	-0.3	LO1, LO2, LO3	
Logic input of HIN & LIN	PVDD+0.3	-	-0.3	HI1, HI2, HI3, LI1, LI2, LI3	
Allowable offset supply voltage transient	50	_	_	dVs/dt	V/ns
Junction temp	150	-	-40	Tı	
Operation temp	125		-40	T _A	°C
Storage temp	150		-65	T_{stg}	
Thermal resistance	160	_	_	θ_{JA}	°C/W

8.6.2 推荐工作范围(T_A=25℃)

表格 8-15 6N DRIVER(SWM21DC8U7/D8U7)推荐工作范围

参数	最大值	典型值	最小值	符号	单位
High side floating supply	250	_	-0.3	VB1, VB2, VB3	
High side floating supply return	VB+0.3	_	VB-20	VS, VS2,VS3	
High side gate drive output	VB+0.3	_	VS-0.3	HO1, HO2, HO3	V
Low side and main power supply	20	_	5	PVDD	V
Low side gate drive output	20.0	_	-0.3	LO1, LO2, LO3	
Logic input of HIN & LIN	20.0		-0.3	HIN1, HIN2, HIN3, LIN1, LIN2, LIN3	
Operation temp	125	_	-40	T _A	°C

8.6.3 电气特性(PVDD=VBS=15.0V, CL=1000pF, T_A=25℃)

表格 8-16 6N DRIVER(SWM21DC8U7/D8U7)电气特性

参数	最大值	典型值	最小值	符号	测试条件	单位
Supply Current						
VCC disable current	_	205	_	ICC_OFF	INH, INL Floating	uA
VCC enable current	_	225	_	ICC_ON	INH, INL is "1"	uA
VB enable current		32	_	IB_ON		uA

SWM211 系列

Leakage current	_	0.1	_	ILK	VB=VS=250V	uA					
HINx//LINx	HINx//LINx										
Input high level voltage	_	_	2.5	VINH	_	V					
Input low level voltage	0.8	_	0	VINL	_	V					
Pull down resistance	_	280	_	RPD	_	ΚΩ					
UVLO											
BS UVLO rising threshold	_	3.85	_	VBSUV_R	_	V					
VBS UVLO falling threshold	_	3.65	_	VBSUV_F	_	V					
VBS UVLO Hysterisis	_	200	_	VBSUV_H	_	mV					
PVDD UVLO rising threshold	_	4.20	_	PVDDUV_R	_	V					
PVDD UVLO falling threshold	_	4.00	_	PVDDUV_F	_	V					
PVDD UVLO Hysterisis	_	200	_	PVDDUV_H	_	mV					
Low-Side/High-Side Output											
Low-Side output high voltage	_	80	_	VOHL	IO=20Ma	mV					
Low-Side output low voltage	_	40	-	VOLL	IO=20Ma	mV					
Low-Side source peak current	_	1.5	_	IOHL	VO=0, VIN=5V	А					
Low-Side sink peak current	_	1.8	_	IOLL	VO=15V, VIN=0V	А					
Allowable negative VS											
voltage for HIN1,2,3 signal	_	-9.0	_	VSN	VBS=15V	V					
propagation to HO1,2,3											

8.6.4 动态电气参数(PVDD= VBS=15.0V, CL=1000pF, T_A=25 °C)

表格 8-17 6N DRIVER(SWM21DC8U7/D8U7)动态电气参数

参数	最大值	典型值	最小值	符号	单位
High side turn on propagation delay	450	350	_	TONH	ns
High side turn off propagation delay	200	100	_	TOFFH	ns
Low side turn on propagation delay	450	350	_	TONL	ns
Low side turn off propagation delay	200	100	_	TOFFL	ns
Dead time	350	250	_	DT	ns
Dealy matching time(TON, TOFF)	50	10	_	MT	ns
Turn on rising time	_	25	_	TR	ns
Turn off falling time	_	25	_	TF	ns

8.7 6N DRIVER(SWM21DK6U7)特性

8.7.1 绝对最大额定值(T_A=25℃)

表格 8-18 6N DRIVER(SWM21DK6U7)绝对最大额定值

参数	最大值	典型值	最小值	符号	单位
VM 电源电压	75	_	-0.3	VM	
高侧浮动电源电压	75	_	-0.3	VB1, VB2, VB3	
高侧浮动地电压	VB+0.3	_	VB-20	VS1, VS2, VS3	
高侧输出电压	VB+0.3	ı	VS-0.3	VHO1, VHO2, VHO3	V
低侧电源电压	20	1	-0.3	VOUT12	
低侧输出电压	VOUT12+0.3	1	-0.3	VLO1, VLO2, VLO3	
逻辑输入电压	6.5	1	-0.3	HIN1, HIN2, HIN3, LIN1, LIN2, LIN3	
可允许摆动电压摆率	V/ns	1	50	dVs/dt	
工作温度	150	1	-40	T _J	°C
工作环境温度	125		-40	T _A	
存储温度	150	_	-65	T_{stg}	
热阻	160	_	_	Θ_{ja}	°C/W

8.7.2 推荐工作范围(T_A=25℃)

表格 8-19 6N DRIVER(SWM21DK6U7)推荐工作范围

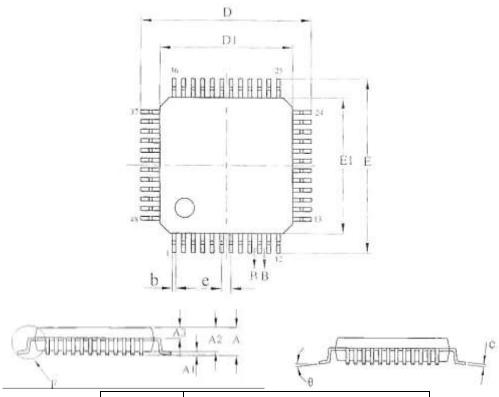
参数	最大值	典型值	最小值	符号	单位
VM 电源电压	70.0	_	-0.3	VM	
高侧浮动电源电压	70.0	_	-0.3	VB1, VB2, VB3	
高侧浮动地电压	VB+0.3	_	VB-25	VS1, VS2, VS3	
高侧输出电压	VB+0.3	_	VS-0.3	VHO1, VHO2, VHO3	V
低侧电源电压	15.0	_	5	VOUT12	
低侧输出电压	15.0		-0.3	VLO1, VLO2, VLO3	
逻辑输入电压	15.0	_	-0.3	HIN1, HIN2, HIN3, LIN1, LIN2, LIN3	
工作环境温度	125		-40	T _A	°C

8.7.3 电气特性(V_M=24.0V, C_L=1000pF, T_A=25℃)

表格 8-20 6N DRIVER(SWM21DK6U7)电气特性

参数	最大值	典型值	最小值	符号	测试条件	单位
工作电流			•			
	_	600	_	ICC_OFF	HIN, LIN 悬空	uA
VM 静态电流	_	600	_	ICC_ON	HIN, LIN 为"1"	uA
VIVI 解形态电池	-	90	_	IB_ON	VBS=12V; HIN=0Vor5V	uA
漏电电流	_	0.1	_	ILK	VB=VS=60V	uA
PWM 逻辑输入特性			•			
逻辑高电位	_	_	2.0	_	VINH	V
逻辑低电位	0.8	_	0	_	VINL	V
下拉电阻	_	140	_	_	RPD	kΩ
保护特性						
VBSUVLO 上升保护阈值	_	4.20	_	_	VBSUV_R	V
VBSUVLO 下降保护阈值	_	3.30	_	_	VBSUV_F	٧
VBSUVLO 迟滞	_	800	_	_	VBSUV_H	mV
VMUVLO 上升保护阈值	_	7.75	_	_	VMUV_R	٧
VMUVLO 下降保护阈值	_	7.30	_	_	VMUV_F	٧
VMUVLO 迟滞	_	450	_	_	VMUV_H	Mv
输出驱动能力						
低侧/高侧上管输出电压	_	95	_	IO=20Ma	VOHL	mV
低侧/高侧下管输出电压	_	35	_	IO=20Ma	VOLL	mV
低侧/高侧上管输出峰值电流	_	1.5	_	VO=0, VIN=5V	IOHL	Α
低侧/高侧下管吸收峰值电流	_	1.8	_	VO=15V, VIN=0V	IOLL	Α
HIN 信号正常传输到 HO 时可	_	-10.0	_	VBS=12V	VSN	V
允许负 VS 电压		10.0		155-12V	1011	•
LDO 输出特性		T	1	,		
栅极输出电压	_	13.0	_	_	VG	V
VOUT12 输出电压	_	12.0	_	VM=24V, 外置 NPN8050	VOUT12	٧
5VLDO 输出电压	_	4.75	_	_	VLDO5	V
5VLDO 输出电流	_	50	_	_	ILDO5	mA

8.7.4 动态电特性(V_P=24V, C_L=1000pF, T_A=25℃)


表格 8-21 6N DRIVER(SWM21DK6U7)动态电特性

参数	最大值	典型值	最小值	符号	单位
上管开通延时	450	300	_	TONH	ns
上管关断延时	200	85	_	TOFFH	ns
下管开通延时	450	300	_	TONL	ns
下管关断延时	200	85	_	TOFFL	ns
死区时间	350	250	_	DT	ns
延时匹配时间	50	10	_	MT	ns
开通上升时间	55	35	_	TR	ns
关断下降时间	30	20		TF	ns

9 封装尺寸

9.1 LQFP48

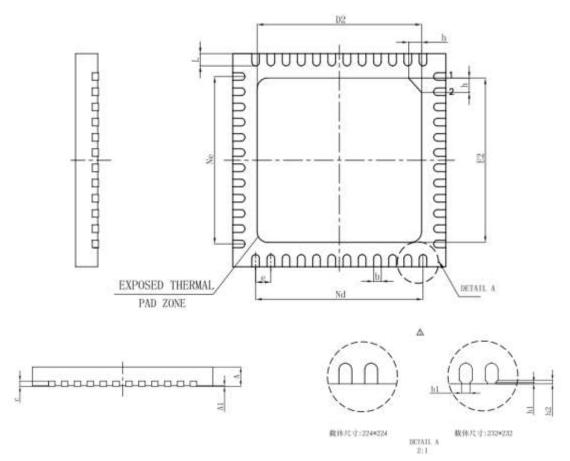

SYMBOL	Dimemsionin mm		
SIMDUL	Min	Nom	Max
A		_	1.60
A1	0.05	_	0.15
A2	1.35	1.40	1.45
А3	0.59	0.64	0.69
b	0.19		0.27
С	0.13		0.18
D	8.80	9.00	9.20
D1	6.90	7.00	7. 10
Е	8.80	9.00	9.20
E1	6.90	7.00	7. 10
е		0.50 BSC ¹	
θ	0	_	7 °

图 9-1 LQFP48 封装尺寸图

 $^{^1}$ BSC 的全称是 Basic Spacing between Centers(中心基本距离),一般用在说明 IC 两引脚中心的基本间距。

9.2 QFN48

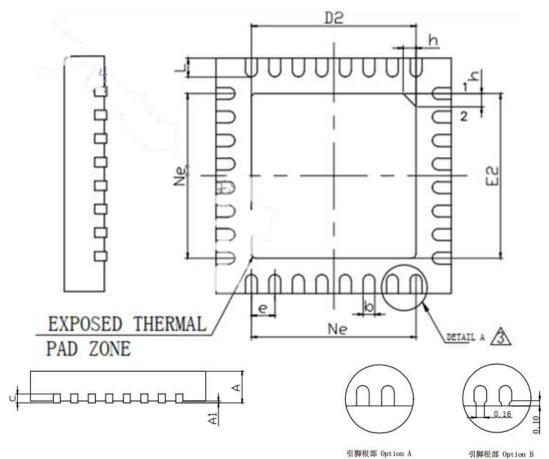

SYMBOL	Dimemsion in mm		
SIMDOL	Min	Nom	Max
A	0.7	0.7	0.7
A1	_	0.02	0.05
b	0.18	0. 25	0.30
b1	0.11	0.16	0.21
С	0.18	0.20	0.23
D	6.90	7.00	7. 10
D2	5. 30	5. 40	5. 50
Е	6.90	7.00	7. 10
E2	5. 30	5. 40	5. 50
L	0.35	0.40	0.45
е	0.50 BSC ²		
Ne/Nd	5.50 BSC		

图 9-2 QFN32 封装尺寸图

 $^{^2}$ BSC 的全称是 Basic Spacing between Centers(中心基本距离),一般用在说明 IC 两引脚中心的基本间距。

QFN32 9.3

引脚根部 Option A

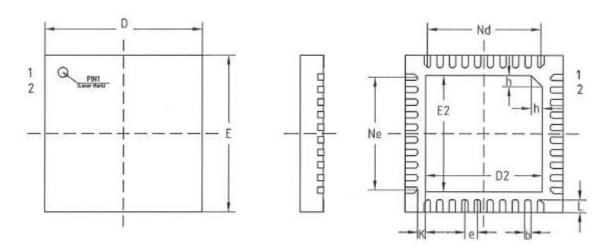
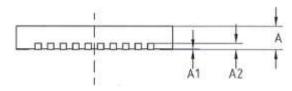

QINDOI	Dimemsion in mm		
SYMBOL	Min	Nom	Max
A	0.7	0.7	0.7
A1	_	0.02	0.05
b	0.18	0.25	0.30
С	0.18	0.20	0.23
D	4. 90	5. 00	5. 10
D2	3. 40	3. 50	3.60
Е	4. 90	5.00	5. 10
E2	3.40	3.50	3.60
L	0.35	0.40	0.45
h	0.30	0.35	0.40
е	0.50 BSC ³		
Ne	3.50 BSC		

图 9-3 QFN32 封装尺寸图


³ BSC 的全称是 Basic Spacing between Centers(中心基本距离),一般用在说明 IC 两引脚中心的基本间 距。

9.4 QFN40

SIDE VIEW 例视图

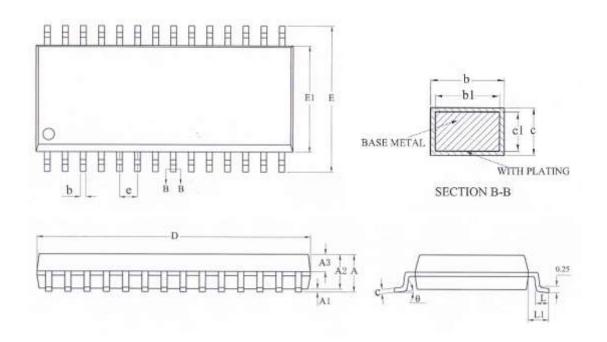
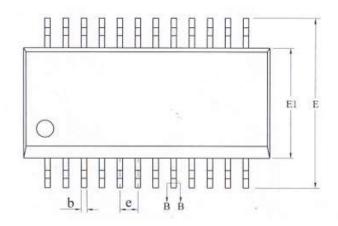
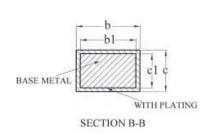

SYMBOL	Dimemsion in mm		
SIMDOL	Min	Nom	Max
A	0.70	0.75	0.80
A1	-	0.02	0.05
A2	0. 203 REF		
b	0.15	0.20	0.25
D	4.90	5.00	5. 10
D2	3.60	3. 70	3.80
Е	4.90	5.00	5. 10
E2	3.60	3. 70	3.80
е	0.40 BSC ⁴		
K	0.20	0. 25	0.30
L	0.35	0.40	0.45
h	0.30	0.35	0.40
Ne	3. 60 BSC		
Nd	3.60 BSC		

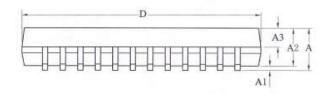
图 9-4 QFN40 封装尺寸图

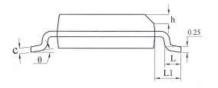
 $^{^4}$ BSC 的全称是 Basic Spacing between Centers(中心基本距离),一般用在说明 IC 两引脚中心的基本间距。

9.5 SSOP28


CAMDOI	Dimemsion in mm		
SYMBOL	Min	Nom	Max
A	_	_	2.00
A1	0.05	_	0. 25
A2	1.65	1.75	1.85
A3	0.75	0.80	0.85
b	0.28	_	0.36
b1	0.27	0.30	0.33
С	0.15	_	0.19
c1	0.14	0.15	0.16
D	10.10	10.20	10.30
Е	7.60	7.80	8.00
E1	5. 20	5. 30	5.40
е	0. 65BSC⁵		
L	0.75	_	1.05
L1	1.25REF		
θ	0 °	_	8 °


图 9-5 SSOP28 封装尺寸图


 $^{^5}$ BSC 的全称是 Basic Spacing between Centers(中心基本距离),一般用在说明 IC 两引脚中心的基本间距。



9.6 SSOP24L

CAMDOI	Dimemsion in mm		
SYMBOL	Min	Nom	Max
A	_	_	1.75
A1	0.10	0.15	0. 25
A2	1.30	1.40	1.50
A3	0.60	0.65	0.70
b	0.23	_	0.31
b1	0.22	0.25	0. 28
С	0.20	_	0. 24
c1	0.19	0.20	0.21
D	8.55	8.65	8. 75
Е	5.80	6.00	6. 20
E1	3.80	3.90	4.00
е	0. 635BSC ⁶		
h	0.30	_	0.50
L	0.5	_	0.80
L1	1.05REF		
θ	0 °	_	8 °

 $^{^6}$ BSC 的全称是 Basic Spacing between Centers(中心基本距离),一般用在说明 IC 两引脚中心的基本间距。

10 版本记录

	使用相关/PGA 基准等 PWM 外部信号配置说明等 字控制 bit 及 EREFSEL
V1.02 2022.09.27 更新预驱相关/OPA	PWM 外部信号配置说明等
	PWM 外部信号配置说明等
V1.03 2022.10.26 更新 21P 细节/ISP/	
	存控制 bit 及 EREFSEL
V1.04 2022.11.22 ADC CTRL2 新增锁者	
	B10 新增;B12 去掉 SPI1MOSI,B13 新
増	
V1.06 2023.03.08	g vldo5;M8/M10 引脚有强制上拉且
无法关闭 	
V1.07 2022.04.20 更新电气特性/新增	g SWM21DD8U7 型号
V1.08	急,匹配 CA-01 丝印
V1.09 2023.07.07 更新 IO 上下拉电阻	且参数/更新 BOD 格式
V1.10 2023.07.28 更新特性中 OPA 相	l关/更新 21DD 管脚详情
V1.11 2023.08.09 更新管脚说明部分	细节
V1.12 2023.08.16 更新 eflash 电气参	数
更新命名规则说明	;删除文档下载地址章节;更新
V1.13 2023.09.14 3P3N 预驱结构框图	图; 更改工作电源电压最大绝对额定
值;删除 FLASH 工	作电压
V1.14 2023.09.19 调整表格排版,单	立符号; 删除低压复位参数表
V1.15 2023.10.08 更新 Sleep mode 功	1耗
V1.16 2023.10.10 更新 SWM21DK6U7	7、SWM21PG6S7 管脚描述
V1.17 2023.10.18 添加 QFN40 封装尺	计图
V1.18	管脚图、管脚定义;添加 SSOP24L 封
V1.18	
更改 SWM21PE6S7	PIN18 管脚定义;修改 BODCR 寄存器
V1.19	性

Important Notice

Synwit Products are neither intended nor warranted for usage in systems or equipment, any malfunction or failure of which may cause loss of human life, bodily injury or severe property damage. Such applications are deemed, "Insecure Usage".

Insecure usage includes, but is not limited to: equipment for surgical implementation, atomic energy control instruments, airplane or spaceship instruments, the control or operation of dynamic, brake or safety systems designed for vehicular use, traffic signal instruments, all types of safety devices, and other applications intended to support or sustain life.

All Insecure Usage shall be made at customer's risk, and in the event that third parties lay claims to Synwit as a result of customer's Insecure Usage, customer shall indemnify the damages and liabilities thus incurred by Synwit.